
Improving Performance
using the LINUX IO
Scheduler
Shaun de Witt
STFC

ISGC2016

Role of the Scheduler

Optimise Access to Storage
CPU operations have a few processor cycles (each cycle
is < 1ns)

Seek operations take about ~> 8ms (25 million times
longer)

Reorder IO requests to minimise seek time

Two main operations – sorting and merging
Sorting arranges block reads sequentially

Merging makes two adjacent block reads into one

Where the Scheduler Sits
© Werner Fischer & Georg Schonberger
 https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Available Schedulers

Linux Kernel >= 2.4 has 4 schedulers
CFQ (default)

Deadline

Anticipatory

Noop

Completely Fair Queueing

Each IO device gets its own queue and each queue gets
its own timeslice

Scheduler reads each queue in round-robin until end
of timeslice

Reads prioritised over writes

Deadline

Three queues
Elevator queue containing all sorted read requests
Read-FIFO queue containing time ordered read requests
Write-FIFO queue containing time ordered write requests

Each request in FIFO queue has an ‘expiration time’ of 500
ms

Normally requests are served from the elevator queue, but as
requests expire in the FIFO queue, these queues will take
precedence

Gives good avaerage latency but can reduce global
throughput

Anticipatory

Similar to deadline scheduler
But with some anticipatory knowledge – expectation of
a subsequent read

Read requests serviced within deadline, but then
pauses for 6ms, waiting for a subsequent read of the
next block

In general, this works well if most reads are dependent
(e.g. reading sequential blocks in a streaming
operation)

But may be poor for vector reads

NOOP

Simplest scheduler

Only does basic merging
NO SORTING

Recommended for non-seeking devices (e.g. SSDs)

Hardware Set-up at RAL

Diskservers configured in RAID6 or RAID60 with 3
partitions

Allows for two independent disk failures without losing
data

Uses hardware RAID controllers
Various vendors dependent on procurement

Unusual Horizontal striping
Minimise RAID storage overhead

RAID Configuration
FS1 FS2 FS3

‘Typical’ RAID6
Configuration

RAL RAID6 Configuration

Impact of Using Hardware
RAID

RAID controller has fairly big cache
Able to write quickly for large periods of time

But now CFQ sees only one device (or one for each
filesystem)

Scheduler sorts iops assuming a well defined disk layout
But RAID controller has a different layout and will resort it

Not normally a significant overhead, until the iops become
large and effectively random

Double sorting and different cache sizes between kernel and
RAID controller lead to massive inefficiencies
Almost all application time spent in WIO

What made RAL look at this

CMS Problems

Accessing disk-only storage under LHC Run 2 Load

All disk servers (~20) running at 100% WIO
Only certain workflows (pileup)

Job efficiencies running <30%

Other Tier 1 sites also had problems, but were much
better (~60% CPU efficiency)

‘Normal’ CPU efficiencies run >95%

Solutions…

Limit number of transfers to each disk server
Jobs timeout waiting for storage system scheduling

Means few jobs run well, but most fail

Limit number of pileup jobs on the processing farm
No reliable mechanism for identifying them

Add more disk servers
Would work, but would have cost implications

Finally…

Try switching scheduler…
Can be done and reverted ‘on the fly’

Does not require a reboot

Can be applied on a single server to investigate the impact

Preemptive CAVEAT
Don’t try this at home!
Software RAID and different RAID controllers will behave
differently
Only do this if either

Your storage system is already ‘overloaded’
You have tested the impact with your hardware configuration

Anecdotal Impact

Switched to NOOP scheduler
WIO reduced from 100% to 65%

Throughput increased from 50Mb/s to 200Mb/s

Based on making a change to 1 server under
production workload

Anecdotal Impact

Anecdotal Impact

Attempt to Quantify

Heavy WIO reproduced by
Multiple jobs reading/writing whole files (1GB random
data)

Different R/W mixing

Using xrootd protocol

200 different files for reading (try to remove any effect
of caching reads)

50-50 Job Mix

0

50

100

150

200

250

10 25 50 100 150 200

R
e

ad
 T

im
e

 (
se

c)

Number of Jobs

50-50 Job Mix, READ rates

CFQ

NOOP

0

200

400

600

800

1000

1200

10 25 50 100 150 200

W
ri

te
 T

im
e

 (
se

cs
)

Number of Jobs

50-50 Job Mix, WRITE rates

CFQ

NOOP

50-50 Job Mix (100 jobs)

C
FQ

N

O
O

P

Read Dominated (80-20) Job
Mix

0

50

100

150

200

250

10 25 50 100 150 200

se
cs

Number of Jobs

80-20 Job Mix, READ rates

CFQ

NOOP

0

200

400

600

800

1000

1200

10 25 50 100 150 200

M
B

/s

Number of Jobs

80-20 Job Mix, WRITE rates

CFQ

NOOP

Read Dominated Job Mix

C
FQ

N

O
O

P

Write-Dominated (20-80) Job
Mix

0

5

10

15

20

25

30

35

40

45

50

10 25 50 100 150 200

se
cs

Number of Jobs

20-80 Job Mix, READ rates

CFQ

NOOP

0

200

400

600

800

1000

1200

10 25 50 100 150 200

se
cs

Number of Jobs

20-80 Job Mix, WRITE rates

CFQ

NOOP

Read Dominated Job Mix

C
FQ

N

O
O

P

Summary & Conclusion

Attempted controlled tests showed no significant benefit of
using NOOP or CFQ schedulers

ATLAS problems bear this out

… or to spin results positively
There is no detriment observed to using NOOP over CFQ

Left with the question what is it about the pile-up jobs that
causes such a bad impact on the disk servers, and why does
NOOP give such a big gain

Questions – Because I still have many!

