
Scaling the Geneva	library collection
to large	HPC	clusters
Dr.	Rüdiger	Berlich,	Dr.	Sven	Gabriel,	Dr.	Ariel	Garcia

Gemfony	scientific	UG	(haftungsbeschränkt)

With special thanks to
Jan	Knedlik,	Prof.	Dr.	Matthias	Lutz,	Dr.	Kilian	Schwarz

of	GSI	Darmstad

15.03.2016

Contact:	
contact@gemfony.eu



Who	we are

• Gemfony	scientific
– A	spinoff fromSteinbuch	Centre for Computing	

at Karlsruhe	Institute	of	Technology
• With particular experience in	the fields of

– Optimization	of	complex systems
– Technical- and Science-Consulting
– Implementation	of	IT-Solutions
– Technical	Marketing,	PR	and Training

• Long	standing bacground in	parametric
optimiuation
– Gemfony	maintains theGeneva	library

collection of	distributed optimization algorithms



Parametric Optimization:	Findingmaxima or minina of

• Any mapping „f“	from input parameters to one or more numeric evaluations can be optimized
• For one evaluation criterion:	optimization ==	finding suitable minima or maxima of solver „f“

– Very similar to the search for extreme	values of mathematical functions
– „Solution	space“	formultiple	criteria

• However In	the general case,	„f“	will	be a	computer program
• Hence standardmathematical procedures cannot be applied easily
• Solvers may be computationally expensive
• As	optimization algorithmswill	typically call the solver hundreds or thousands of times,	such	

optimization problems will	greatly benefit from parallelization

!
Q =
!
f (x1, x2,..., xn )



Parallelizabilityon	the Example of	Evolutionary Algorithms

„Gauss-Mutation“



Why in	„Massively Distributed	Computing	and Citizen Sciences“

• While this is probably not	an	exact fit:
– Geneva	is commercially supportedOpen	Source	
(see http://www.launchpad.net/geneva)

– Geneva	particularly targets distributed and parallel	
execution

– As	optimization is a	generic topic,	application
scenarios target just	about every aspect of	daily life

– Free	(simulation-)tools,	along with cheap cloud
resources,	allow research to be performed by all	
scientifically interested parties



The	Geneva Library	Collection

• Generic solution for the search for
optimized solutionsof technical and
scientific	problems

• „Metaheuristic“	Optimization
– Covering Evolutionary Algorithms,	Swarm

Algorithms,	 Simulated Annealing,	
Parameter	Scans	and Gradient	Descents

• Data	structures allowdirect interaction
between different	optimization algorithms
with just	one problem description

• Written in	portable	C++
– Uses the Boost library collection
– Runs	on	different	Unix	variants (Linux,	

MacOS,	...)	andWindows	 (experimental!)
• >	130.000	LOC	(.hpp,	.cpp,	scripts,	...)

Sources:
• Car:	 Image	courtesy of	Simon	Howden at FreeDigitalPhotos.net

• Wind	turbines:	http://www.flickr.com/photos/pebondestad/3533177131/sizes/l/in/photostream/
Creative	Commons Attribution 2.0;	By Pål Espen	Bondestad

• Particle decay:	https://en.wikipedia.org/wiki/File:CMS_Higgs-event.jpg Creative	Commons Attribution Share-Alike 3.0;	By CERN



Library	Components

Common

Courtier
Parallel- and distributed execution and

communication

Hap
Random	numer creation and consumer-

agnostic handling

Geneva

Testing

individual	and
collective tests

Problem	
definition

Optimization
algorithms

Internal	
interfaces

Server Consumer RN-
Factory

RN-
Creation

RN-
Proxy

Examples

for all	libraries

Combiner External
interfaces Monitoring

General-
purpose code

Plot-Creation

Source:	Gemfony

Strong	modularization allows for an	efficient decoupling of	evaluation and optimization!



Tuning	Scalability

• „Performance“	is very problem-dependent
• In	a	nutshell,	on	the same	hardware,	performance improvementsmay

be achieved in	numerousways,	e.g.
– Making	the Geneva	codemore efficient

• BUT:	Focus	on	long-running evaluation-functions mandates focus on	core-library
stability rather than performance

• Reducing run-time	of	the solver(s). But:	task for the user
– Making	optimizationalgorithmsconverge faster

• Minimization of	Iterations needed to reach a	given optimum
• But	in	particular:	Parallelizationof	parallelizableparts

– Reducingparallelization-overhead:	„Amdahl“	mayhave a	major impact
on	performanceàAsynchronous transfer of	candidate solutions

– May	need to cater for potentially thousands of	clients,	running for hours
or days

• Reducing protocol overhead and improvingstability is crucial



The	„Courtier“	Library:	Problem-Independent	Parallelization

E.g.	O
penCL/	GPGPU

This	will	generally be
An	optimization algorithm

Source:	Gemfony



Proactor Pattern

• Boost.ASIO
– Uses operating systemparallelization

• Thus	very efficient
– Will	likely be part of	the next standard C++17
– Main	usage:	tcp networking in	C++

• Need	to deal	with TCP	oddities on	the lowest level

Picture	source:	Wikipedia	„Proactor“,	LicenseCC-BY-SA	3.0,	Author UlrichAAB



Dissecting the Network	Mode	(1)

• Currentusage pattern in	the release version (pull-mode!)
– Client	connects,	retrieveswork item,	disconnects,	does calculation,	

reconnects,	transfers a	result and retrieves the nextwork item
– Many sockets are opened and closed
– If calculation time	and speed of	clients is similar,	connectionsmay

happen	within a	very small time	windowà long idle times for the server,	
followed by short periods of	very high	traffic

– From the server-perspective,	the problemmaybe quite similar to a	high-
loadweb-server

• Chosen,	as,	from the libraryperspective,	there is no informationabout
the length of	an	evaluation --may take seconds or days
– Server	must	cater for missing responses
– Timeout	must	be calculated and possibly clients resubmitted,	whichmay

be problematic
• Scales to approx.	100	clients,	but	showsmanyproblems beyond this



Dissecting the Network	Mode	(2)	/	How to tune	a	frequent-access	Linux	server ?

• Simultaneously open	files per	process:
– E.g.	on	MacOS:	„ulimit –n“	returns 256.	Even	on	a	stock	
Ubuntu:	only set to 1000	

– But	every new socket	requires a	file handle	...
– ...	and even when a	socket	is closed,	the handle	is kept around,	
possibly for minutes,	dependingon	the TCP/IP	implementation

• Supply	of	“short-lived“	ports
– By default 32768	– 61000	(range may be slightly increased)
– Every	new connection consumes a	new port

• E.g.	two ssh connections to a	server yields

– Unused ports are recycled ...	after	some time

Follows http://www.lognormal.com/blog/2012/09/27/linux-tcpip-tuning/



Dissecting the Network	Mode	(3)	/	How to tune	a	frequent-access	Linux	server ?

• TIME_WAIT
– Purpose:	Packages	returning after	a	connection is
closed do	not	confuse TCP

– May	last	long ...	2	minutes not	uncommon
– Affects open	files,	ephemeral ports

• iptables /	Connection	Tracking
– iptables needs to allow two-way communication
through the firewall

– Needs	to track connections
– Keeps a	list of	connections,	whose state is kept in	a	list
– The	list may not	exceed a	given limit
– Will	lead to silent failures if it does



Dissecting the Network	Mode	(4)	/	How to tune	a	frequent-access	Linux	server ?

• „nf_conntrack_tcp_timeout_established“
– Timeout	for established connections
– Has very high	default value of	432000	seconds

• Saturation	of	server by many simultaneous connections
– De-Serialization in	C++	(usingBoost.Serialization)	maybe very costly
– Must	make sure (de-)serialization is disconnected fromacceptingnew

connections,	or the server may not	be responsive
• Queue-flooding in	pull-mode

– Where a	timeout is reached,	work itemsmay need to be resubmitted.	
– Resubmissionhappensthrough a	queue
– Where timeout-values are not	coupled (correctly)	to the average

compute time	of	clients,	the queuewill	be floodedwith work items
– Need	tomake sure consumption rate	is higher than submission rate



In	summary,	problems relate to ...

• TCP/IP	oddities
• Firewall	deficiencies
• Internal	architecture of	Geneva

à Not	an	easy	problem
à Need	to reduce complexity!
à Current design	goal:	Use a	Websocket-type	
server architecture.	May	solve MANY	of	the
above problems



Websockets (1)

• Client	never disconnects
– Reduces complexityon	the TCP	level
– Reduces overhead for handshakes
– May	even allow a	push-mode,	without fear of	queue-
flooding

– May	inform clients about shutdowns (formerly theywould
have to terminate,	when the server became unrechable)

• Must	deal	with TCP-timeouts
– “Paylod-communication“	may still	only happen	in	very long
intervals,	as the clientmay just	sit there,	doing calculations

– Will	need a	„heart-beat“



Websockets (2)

• Current implementation derived from
„eidheim /	Simple-Websocket-Server“	(see
https://github.com/eidheim/Simple-
WebSocket-Server )
– MIT-licensed
– Based on	Boost.ASIO
– Pure	C++11

• Removed the pure	„Websocket“	part,	but	kept
part of	the architecture



Websockets (3)

• Communication	now happens on	two levels:
– Administrative	(initial	hand-shake,	keep-alive in	
regular intervals)

– Payload	(exchange of	work-items	and results)
• Payload-protocol is implemented on	top	of	the
message-transfer

• Administrative	and payload-messages	enter the
same	queueà submission in	the order they
entered the queue

• Payload	processing needs to happen	in	own
thread-pool	to keep client and server responsive



Summary

• High-throughput /	high	frequency TCP	
communication in	C++	is CHALLENGING

• Current Design	seems to be far more responsive
• Not	yet part of	a	stable release
• Needs	further tests
• Will	be part of	Geneva	2.0,	which also	represents
a	major redesign (C++14,	simpler	creation of	new
optimization algorithms,	Broker-only architecture
for parallelization,	...)



Thank you /	Contact

Thanks
to the audience and the GSI	team!

If you want to try Geneva:
http://launchpad.net/geneva

Youmay reach us at
contact@gemfony.eu

The	project-team	wants to thank Karlsruhe	Institute	of	Technology,	 Steinbuch	Centre for Computing
as well as the Helmholtz-Association for supporting our work!



Masthead Gemfony

Address Gemfony	scientific	UG	(haftungsbeschränkt)
Leopoldstr.	122
76344	Eggenstein-Leopoldshafen
Germany

Telefone +49(0)7247/934278-0

Fax +49	(0)7247	934	2781

Email contact@gemfony.eu

Registered at Amtsgericht Mannheim (Germany)
Registration-Id HRB	710566

Ust.-Id DE274421406

Managing Director Dr. Rüdiger Berlich


