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Who	we are

• Gemfony	scientific
– A	spinoff fromSteinbuch	Centre for Computing	

at Karlsruhe	Institute	of	Technology
• With particular experience in	the fields of

– Optimization	of	complex systems
– Technical- and Science-Consulting
– Implementation	of	IT-Solutions
– Technical	Marketing,	PR	and Training

• Long	standing bacground in	parametric
optimiuation
– Gemfony	maintains theGeneva	library

collection of	distributed optimization algorithms



Parametric Optimization:	Findingmaxima or minina of

• Any mapping „f“	from input parameters to one or more numeric evaluations can be optimized
• For one evaluation criterion:	optimization ==	finding suitable minima or maxima of solver „f“

– Very similar to the search for extreme	values of mathematical functions
– „Solution	space“	formultiple	criteria

• However In	the general case,	„f“	will	be a	computer program
• Hence standardmathematical procedures cannot be applied easily
• Solvers may be computationally expensive
• As	optimization algorithmswill	typically call the solver hundreds or thousands of times,	such	

optimization problems will	greatly benefit from parallelization

!
Q =
!
f (x1, x2,..., xn )



Parallelizabilityon	the Example of	Evolutionary Algorithms

„Gauss-Mutation“



Why in	„Massively Distributed	Computing	and Citizen Sciences“

• While this is probably not	an	exact fit:
– Geneva	is commercially supportedOpen	Source	
(see http://www.launchpad.net/geneva)

– Geneva	particularly targets distributed and parallel	
execution

– As	optimization is a	generic topic,	application
scenarios target just	about every aspect of	daily life

– Free	(simulation-)tools,	along with cheap cloud
resources,	allow research to be performed by all	
scientifically interested parties



The	Geneva Library	Collection

• Generic solution for the search for
optimized solutionsof technical and
scientific	problems

• „Metaheuristic“	Optimization
– Covering Evolutionary Algorithms,	Swarm

Algorithms,	 Simulated Annealing,	
Parameter	Scans	and Gradient	Descents

• Data	structures allowdirect interaction
between different	optimization algorithms
with just	one problem description

• Written in	portable	C++
– Uses the Boost library collection
– Runs	on	different	Unix	variants (Linux,	

MacOS,	...)	andWindows	 (experimental!)
• >	130.000	LOC	(.hpp,	.cpp,	scripts,	...)

Sources:
• Car:	 Image	courtesy of	Simon	Howden at FreeDigitalPhotos.net

• Wind	turbines:	http://www.flickr.com/photos/pebondestad/3533177131/sizes/l/in/photostream/
Creative	Commons Attribution 2.0;	By Pål Espen	Bondestad

• Particle decay:	https://en.wikipedia.org/wiki/File:CMS_Higgs-event.jpg Creative	Commons Attribution Share-Alike 3.0;	By CERN
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Source:	Gemfony

Strong	modularization allows for an	efficient decoupling of	evaluation and optimization!



Tuning	Scalability

• „Performance“	is very problem-dependent
• In	a	nutshell,	on	the same	hardware,	performance improvementsmay

be achieved in	numerousways,	e.g.
– Making	the Geneva	codemore efficient

• BUT:	Focus	on	long-running evaluation-functions mandates focus on	core-library
stability rather than performance

• Reducing run-time	of	the solver(s). But:	task for the user
– Making	optimizationalgorithmsconverge faster

• Minimization of	Iterations needed to reach a	given optimum
• But	in	particular:	Parallelizationof	parallelizableparts

– Reducingparallelization-overhead:	„Amdahl“	mayhave a	major impact
on	performanceàAsynchronous transfer of	candidate solutions

– May	need to cater for potentially thousands of	clients,	running for hours
or days

• Reducing protocol overhead and improvingstability is crucial



The	„Courtier“	Library:	Problem-Independent	Parallelization

E.g.	O
penCL/	GPGPU

This	will	generally be
An	optimization algorithm

Source:	Gemfony



Proactor Pattern

• Boost.ASIO
– Uses operating systemparallelization

• Thus	very efficient
– Will	likely be part of	the next standard C++17
– Main	usage:	tcp networking in	C++

• Need	to deal	with TCP	oddities on	the lowest level

Picture	source:	Wikipedia	„Proactor“,	LicenseCC-BY-SA	3.0,	Author UlrichAAB



Dissecting the Network	Mode	(1)

• Currentusage pattern in	the release version (pull-mode!)
– Client	connects,	retrieveswork item,	disconnects,	does calculation,	

reconnects,	transfers a	result and retrieves the nextwork item
– Many sockets are opened and closed
– If calculation time	and speed of	clients is similar,	connectionsmay

happen	within a	very small time	windowà long idle times for the server,	
followed by short periods of	very high	traffic

– From the server-perspective,	the problemmaybe quite similar to a	high-
loadweb-server

• Chosen,	as,	from the libraryperspective,	there is no informationabout
the length of	an	evaluation --may take seconds or days
– Server	must	cater for missing responses
– Timeout	must	be calculated and possibly clients resubmitted,	whichmay

be problematic
• Scales to approx.	100	clients,	but	showsmanyproblems beyond this



Dissecting the Network	Mode	(2)	/	How to tune	a	frequent-access	Linux	server ?

• Simultaneously open	files per	process:
– E.g.	on	MacOS:	„ulimit –n“	returns 256.	Even	on	a	stock	
Ubuntu:	only set to 1000	

– But	every new socket	requires a	file handle	...
– ...	and even when a	socket	is closed,	the handle	is kept around,	
possibly for minutes,	dependingon	the TCP/IP	implementation

• Supply	of	“short-lived“	ports
– By default 32768	– 61000	(range may be slightly increased)
– Every	new connection consumes a	new port

• E.g.	two ssh connections to a	server yields

– Unused ports are recycled ...	after	some time

Follows http://www.lognormal.com/blog/2012/09/27/linux-tcpip-tuning/



Dissecting the Network	Mode	(3)	/	How to tune	a	frequent-access	Linux	server ?

• TIME_WAIT
– Purpose:	Packages	returning after	a	connection is
closed do	not	confuse TCP

– May	last	long ...	2	minutes not	uncommon
– Affects open	files,	ephemeral ports

• iptables /	Connection	Tracking
– iptables needs to allow two-way communication
through the firewall

– Needs	to track connections
– Keeps a	list of	connections,	whose state is kept in	a	list
– The	list may not	exceed a	given limit
– Will	lead to silent failures if it does



Dissecting the Network	Mode	(4)	/	How to tune	a	frequent-access	Linux	server ?

• „nf_conntrack_tcp_timeout_established“
– Timeout	for established connections
– Has very high	default value of	432000	seconds

• Saturation	of	server by many simultaneous connections
– De-Serialization in	C++	(usingBoost.Serialization)	maybe very costly
– Must	make sure (de-)serialization is disconnected fromacceptingnew

connections,	or the server may not	be responsive
• Queue-flooding in	pull-mode

– Where a	timeout is reached,	work itemsmay need to be resubmitted.	
– Resubmissionhappensthrough a	queue
– Where timeout-values are not	coupled (correctly)	to the average

compute time	of	clients,	the queuewill	be floodedwith work items
– Need	tomake sure consumption rate	is higher than submission rate



In	summary,	problems relate to ...

• TCP/IP	oddities
• Firewall	deficiencies
• Internal	architecture of	Geneva

à Not	an	easy	problem
à Need	to reduce complexity!
à Current design	goal:	Use a	Websocket-type	
server architecture.	May	solve MANY	of	the
above problems



Websockets (1)

• Client	never disconnects
– Reduces complexityon	the TCP	level
– Reduces overhead for handshakes
– May	even allow a	push-mode,	without fear of	queue-
flooding

– May	inform clients about shutdowns (formerly theywould
have to terminate,	when the server became unrechable)

• Must	deal	with TCP-timeouts
– “Paylod-communication“	may still	only happen	in	very long
intervals,	as the clientmay just	sit there,	doing calculations

– Will	need a	„heart-beat“



Websockets (2)

• Current implementation derived from
„eidheim /	Simple-Websocket-Server“	(see
https://github.com/eidheim/Simple-
WebSocket-Server )
– MIT-licensed
– Based on	Boost.ASIO
– Pure	C++11

• Removed the pure	„Websocket“	part,	but	kept
part of	the architecture



Websockets (3)

• Communication	now happens on	two levels:
– Administrative	(initial	hand-shake,	keep-alive in	
regular intervals)

– Payload	(exchange of	work-items	and results)
• Payload-protocol is implemented on	top	of	the
message-transfer

• Administrative	and payload-messages	enter the
same	queueà submission in	the order they
entered the queue

• Payload	processing needs to happen	in	own
thread-pool	to keep client and server responsive



Summary

• High-throughput /	high	frequency TCP	
communication in	C++	is CHALLENGING

• Current Design	seems to be far more responsive
• Not	yet part of	a	stable release
• Needs	further tests
• Will	be part of	Geneva	2.0,	which also	represents
a	major redesign (C++14,	simpler	creation of	new
optimization algorithms,	Broker-only architecture
for parallelization,	...)



Thank you /	Contact

Thanks
to the audience and the GSI	team!

If you want to try Geneva:
http://launchpad.net/geneva

Youmay reach us at
contact@gemfony.eu

The	project-team	wants to thank Karlsruhe	Institute	of	Technology,	 Steinbuch	Centre for Computing
as well as the Helmholtz-Association for supporting our work!
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