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Artificial pattern finding

e Straight-line finding
* Applications

— Image stitching

— SPR signal analysis



Artificial pattern finding

* Adding artificial pattern into an image is a convenient
way to locate positions of image objects. However,
sometimes it is non-trivial to identify these patterns.

e Pattern intensity may be un-uniform.

e Pattern may be overlapped by other objects.

e Pattern boundary may not be sharp.

e Pattern may be indistinguishable to background.

* The pattern boundary could be determined by the
location of maximum difference of intensity between
neighboring pixels, provided:

* These locations form the pattern we want.
» Statistics analysis of these locations helps us to
determine the pattern correctly.

Collaborate with Jyh-Cheng Chen (MYU)




Artificial pattern finding
- (ex.1: Image stitching
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Artificial pattern finding
(ex.1: Image stitching)




Artificial pattern finding
(ex.2: SPR signal analysis)

e Contrast medium induced nephropathy (CIN) (ZEE2 5 5 | 250 BH)
has become one of the major reasons of acute kidney injury (AKI)
(= MEEHEE). Currently it cannot be diagnosed until 48 to 72
hours, which is too late for effective treatment.

* The goal:

— To find and validate the miRNA in urine samples as the
biomarkers for early stage human AKI and CIN diagnosis.

— To develop a portable SPR system to rapidly detect the miRNA
biomarkers in urine for clinical diagnosis.

* For data analysis:
— Develop the software for SPR signal analysis.

— Develop the integrated software to operate the portable SPR
system.

Collaborators: Ji-Yen Cheng (AS), Pei-Kuen Wei (AS), Heng Lin (TMU), and Hsi-Hsien
Chen (TMU)



Artificial pattern finding
(ex.2: SPR 5|gnal analy5|s)

K.L.Lee, et al,
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Super Resolution

(Single Molecule Localization)



Super resolution
(Single Molecule Localization Algorithm)
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In PALM & STORM super
resolution imaging, the target
protein molecule is attached with
a fluorescence molecule.

The fluorescence molecule is
activated by a pulse of laser, and
deactivated by photon emission
(PALM) or another pulse of laser
(STORM).

Taking successive images of the
fluorescent sample in activated —
deactivated cycles, we can
precisely determine molecules’
location by SML algorithm.

Collaboration with Peilin Chen, AS.



Super resolution (3D)

Calibration curves for 3D super resolution
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A set of cylindrical lens is introduced in the light
path of image to distort the spots from circle to
ellipse. The widths w, & w, depends on the
vertical position of the molecule. As a result, we
can use the calibration curve to determine the z
coordinate for the given w, & w,.




Super resolution (testing results)
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Particle Tracking

(Improve the cneAnalysis code)



Particle tracking

The Granulocyte- I\/Iacrophage colony stimulating factor
Receptor (GMR) (i 4HAH — EWEAHAESLS 2 HEs N 1< 42),
which is composed of a and 3 subunit, is important to
regulating cell proliferation (¥4 45g) and differentiation (5711)
in each lineages (5% %.).

The goal: To demonstrate the endocytosis (N7Z{EH]) and
activation machinery of GM-CSF (Colony Stimulating Factor)
receptor by two color-tracking analysis of TIRF images for
GMRa & GMRB.

For data analysis, we developed the particle tracking tool to
track the movement of two types of particles through
different channels and reconstruct the co-localized tracks.

This work is based on the cmeAnalysis code developed by
Danuser Lab at Harvard.

Collaborate with Jeffrey j.Y. Yen (AS) & Fan-Ching Chien (NCU)



Particle tracking (cmeAnaIyS|s)
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software

. cmeAnalysis is a Matlab software package for the quantification of clathrin-

CMeANAlYSIS  coated pitdynamics from fluorescence fime-lapse data. The funcionalies
provided include highly sensitive detection, tracking (based on u-track),

master/slave detection for multi-channel data, intensity-hased classification of coated structures, and

litetime analysis. Additionally, the package includes a graphical user interface for inspection of analysis

results from individual movies.

The download includes a user guide, and a test data set is available separately.

« Download (3.5 Mb)
o Testdata set (300 Mb)

Release notes: version 1.03 includes improvements to graphical and console output.

For more information, please see Aguet etal,, Dev. Cell 26(3), pp. 279-291, 2013.

http://lccb.hms.harvard.edu/software.html




Particle tracking
(Original paper of cmeAnalysis)

F.Aguet, et al,
Developmental Cell 26,
279-291 (2013)

Advantages

e Suitable for us
 Widely used

* Source code available

Problem

 Two-Channel tracking: EGFP
as master channel, and RFP as
slave channel, but not
independent channels.

 Ulis not flexible and not user
friendly.

* Tracking data is not available.

Developmental Cell
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SUMMARY

Numerous endocytic accessory proteins (EAPSs)
mediate assembly and maturation of clathrin-coated
pits (CCPs) into cargo-containing vesicles. Analysis
of EAP function through bulk measurement of cargo
uptake has been hampered due to potential redun-
dancy among EAPs and, as we show here, the plas-
ticity and resilience of clathrin-mediated endocytosis
(CME). Instead, EAP function is best studied by un-
covering the correlation between variations in EAP
association to individual CCPs and the resulting
variations in maturation. However, most EAPs bind
to CCPs in low numbers, making the measurement
of EAP association via fused fluorescent reporters
highly susceptible to detection errors. Here, we pre-
sent a framework for unbiased measurement of EAP
recruitment to CCPs and their direct effects on CCP
dynamics. We identify dynamin and the EAP-binding
a-adaptin appendage domain of the AP2 adaptor as
switches in a regulated, multistep maturation pro-
cess and provide direct evidence for a molecular
checkpoint in CME.

time analysis revealing two short-lived "“abortive” subpopula-
tions and a longer-lived “productive” subpopulation (Ehrlich
et al., 2004; Loerke et al., 2009). Experimental manipulation of
cargo concentration (Loerke et al., 2009) and clustering (Liu
etal., 2010), as well as small interfering RNA (siRNA) knockdown
of a subset of EAPs (Mettlen et al., 2009b), shifted the relative
proportions of the three subpopulations, suggesting that transi-
tions between them could be gated by molecular checkpoints
monitoring the state of assembly, cargo recruitment, and poten-
tially other physical properties of CCPs, such as curvature. How-
ever, whether these checkpoints are the consequence of a
purely stochastic process or part of an active control mechanism
that monitors CCP maturation remains unknown. In this regard,
evidence suggests that dynamin may be involved in regulating
CCP maturation in addition to its function in vesicle scission
(Loerke et al., 2009; Mattlen et al., 2009a; Sever et al., 2000),
although its early role in CME remains controversial (Doyon
et al., 2011; Ferguson and De Camilli, 2012; McMahon and
Boucrot, 2011).

An extensive network of EAPs has been characterized
(Schmid and McMahon, 2007; Taylor et al., 2011), but how these
factors contribute to the regulation of CCP maturation and
whether they function through a putative checkpoint mechanism
is unclear, in part because perturbation of EAPs does not yield an
unambiguous phenotype. Indeed, siRNA knockdown studies of
individual EAPs generally produce only mild effects on the effi-
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Particle tracking (cmeAnalysis)
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Particle tracking (detailed track viewer)
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Outlooks

* |Intelligent image data processing
e Large scale and high throughput processing



Outlooks

We are facing the challenges in biomedical image processing
tasks: preciseness and performance.

To tackle these challenges:
* Intelligent image data processing:
— Testing and making decision.
— Machine learning.
e Large scale and high throughput processing:
— Good performance to analyze large amount of data

— Good user interface to navigate the data and the analysis
results.



Outlooks

(Problem of preciseness: Cell image analysis)
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Collaboration with Ji-Yen Cheng (AS)



Outlooks

(Problem of preciseness: Cell image analysis)
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Outlooks

(Cell image analysis: the proposed ideas)

e Testing and making decision:

* The cell image should be examined in
different scales, to capture the cell
locations and filter out the background.

* The cell boundary should be tested with
different thresholds.

* Making scores for each test, and finally
making the decision.

* Machine learning:
* |dentify the pattern features of a given image.
* Fit the result to the model derived from the learning process.




Outlooks

* Biomedical research heavily relies on bioimage analysis.

e Particle tracking with super resolution:
— Track huge amount of individual particles in nano-scale.

— At each sampled time, >= 10000 image frames are required for SML
algorithm.

e Cell tracking: , !
— Has to analysis and incorporate features of each cell for tracking.
— Cell lineage reconstruction.

* More importantly, how to process and access the large amount of
data, or Big Data ?
— Powerful computing system (parallel / GPU / Cloud / Al computing ...)

— Transfer, store, annotate, share, search, and derive new biomedical
knowledge.

— Automatic data processing and analysis are required.

— We also need a well designed user interface and workflow to access and
process data.



Thanks for your attention.



