ISGC 2016 Ubiquitous e-infrastructures and Applications

Data Processing and Visualization for Global High-Resolution Climate Simulations

Chia-Ying Tu^R, Huang-Hsiung Hsu^R Lung-Cheng Lee^H, Ching-Yao Lin^H, Whey-Fone Tsai^H

> R - RCEC, Academia Sinica H - NCHC, NARLabs

March 16, 2016 @ Academia Sinica, Taipei, Taiwan

FV3: Finite-Volume Dynamical Core on the Cubed-Sphere Globe

- 4th order Finite-Volume algorithms with a true Lagrangian vertical coordinate (Lin 2004)
- Designed for fine-grained parallelism (MPI, openMP, and GPU); scalable to ~million cores (IBM BG) at cloud-resolving resolution
- Hydrostatic or non-hydrostatic, regional or global (run time options)

Ultra-high resolution regional-global model

I. Nested regional-global model

- Regional model can be run independently or two-way nested with the global model
- Suitable for weather & climate

II. Variable resolution global model

- Single model framework with smooth transition in resolution (e.g., 10 km over Taiwan stretched to 68 km over Andes Mountains)
- Suitable for weather & climate

Oklahoma City

Stretched Cube Sphere Globe (center @ TW) C384 Stretched Factor 2.5 (Δx ≈ 10km~68km)

Grid Size of Stretched Cube Sphere Globe C384R2.5 center @ Taiwan

• horizontal grid spacing for C384R2.5 ranges from around 10km to 68km.

Computing & Storage Demand for CMIP6 (ALPS: 177 T-Flops, 25,600 CPUs, 225M SU/yr)

MIPs	Model	Computing	Storage
CMIP6	TaiESM 1º	4.31M SU	60TB
	991 model years	(8*544 SU/yr)	(60GB/yr)
HighResMIP	HiRAM C192 & C384	4.84M SU	370TB
	66 model years (Tier 1 only, no DECK)	(73,344 SU/yr)	((4.6+1)TB/yr)
PMIP	TaiESM 1°	0.87M SU	12TB
	200 model years		
CFMIP	TaiESM 1°	0.76M SU	10.4TB
	174 model years		
AerChemMIP	TaiESM 1°	8.11M SU	112.4TB
	600 yrs AMIP+1274 yrs coupled		
GMMIP	HiRAM C192	0.7M SU	80TB
	80 yrs extra from HighResMIP		(1TB/yr)
		~20M SU	~650 TB

Experimental Platform for Weather/Climate Data Processing and

NetCDF File Partitioning

netCDF Library/nc_reader.f

- 1. Install netCDF library (C /Fortran)& cdi to BigDataLab cluster
- 2. Use netCDF Fortran API to develop general netCDF reader (nc_reader.f)
- Read netCDF file (nc) and partition the variables to multi blocks (by time)
- 4. Distribute these blocks to DataNodes and parallel load blocks into local MariaDB
- 5. Save dimension, unit, Ion, Iat, Iev, time, varBlock tables to MariaDB
- 6. Save varBlockList tables, HostTable to master MariaDB
- 7. Will try to split variables data by time & level

gfortran nc_reader.f -o nc_reader -I\${NETCDFDIR}/include –L {NETCDFDIR}/lib -Inetcdff

Multi-DB Query & Post Processing

132 st	201408247500000b1k	20140824.75 linux14
133 st	201408250000000b1k	20140825 linux15
134 st	201408252500000b1k	20140825.25 linux16
135 st	201408255000000b1k	20140825.55 linux16
136 st	201408257500000b1k	20140825.75 linux17
137 st	201408260000000b1k	20140826.75 linux1
138 st	201408262500000b1k	20140826.25 linux2
139 st	201408265000000b1k	20140826.55 linux3
140 st	201408267500000b1k	20140826.75 linux4
141 st	20140827000000001k	20140827.25 linux5
142 st	2014082725000000b1k	20140827.25 linux6
143 st	201408275000000b1k	20140827.5 linux7
144 st	2014082775000000b1k	20140827.75 linux8
145 st	201408280000000b1k	20140828 linux10
146 st	2014082825000000b1k	20140828.25 linux11
147 st	201408285000000b1k	20140828.5 linux12
148 st	2014082875000000b1k	20140828 75 linux13
149 st 150 st 151 st 152 st cluster: linux	2014082900000000blk 201408292500000blk 20140829500000blk 201408295000000blk 201408295000000blk	20140829 linux14 20140829.25 linux15 20140829.5 linux16 20140829.75 linux16
cluster linux1 cluster linux1 cluster linux1 cluster linux1	got 20140723.000000 got 20140727.250000 got 20140809.000000 got 20140731.500000	<pre>, st201407230000000blk , st201407272500000blk , st201408090000000blk , st201407315000000blk</pre>
cluster linux1 cluster linux1 cluster linux1 cluster linux1	got 20140821.750000 got 20140826.000000 got 20140817.500000 got 20140830 250000	<pre>, st201408217500000blk , st201408260000000blk , st201408175000000blk st201408302500000blk</pre>
cluster linux1	got 20140804.750000	, st201408047500000blk
cluster linux1	got 20140903.500000	, st201409035000000blk
cluster linux1	got 20140813.250000	, st201408132500000blk

* Tropical Cyclones and Extreme Precipitation in HiRAM

Typhoon and Hurricanes

Typhoon Tracks (1979~2008)

Typhoon Density (1979~2008)

Western North Pacific - Typhoon Density (1979~2008)

Western North Pacific - Typhoon Counts & Precipitation

> 34 knots (TS) > 64 Knots (Cat1)

IBTrACs_v03r05	25.5	14.3
HiRAM_c384tw_amip	35.8	19.5
HiRAM_c384_rcp85	20.89	10.78

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Visualization

Feature Detection from Visual Animation

NEHE

Formation of Typhoon eddies are detected through image pattern recognition

Concluding Remarks

- Here we present a big data experimental platform for climate data processing and visualization.
- This platform links computing environment for global climate simulation and big data analysis system that improves data management and processing power.
- Climate data analysis is more complicated and much larger in data size than what we have shown.
- NetCDF is wide used in weather/climate data, but is only popular in atmospheric research community.

Performance

Table 1 · Experimental Data

	Atmos_20750801	Case20140723	Case20090801
Block Number	248	181	36
Block Size	1,179,648	819,200	18,874,368
Total Size(byte)	7,021,264,896	3,558,604,800	16,307,453,952

Table 2 • Execution time (ms)

	Atmos_20750801	Case20140723	Case20090801
Sequence(ms)	364,360	278,759	1,154,360
1 (task/node)(ms)	46,396	23,846	152,326
2 (task/node)(ms)	42,516	22,969	138,805
4 (task/node)(ms)	39,126	20,958	118,652
8 (task/node)(ms)	33,173	19,982	Х
16 (task/node)(ms)	27,666	16,661	Х

Linux1-linux8, linux10-linux18 RAM:8G (600MB-1.0GB free)

Nb=L*N+M Nb=36, N=17 => L=2, M=2

Performance

Performance

1 (task/node)

Ę

In Place Query Driven Post Processing for Global Climate Simulation

atmos_8xdaily_20750801.nc (1536x768x248)

1. On linux250 with sequential process : 670 sec

2. Distributed DB with local query & process (linux1-linux8, linux10-linux18) then send back to linux250: 58 sec

- 3. Nb=248=14(L)x17(N)+10(M)=15(L) => 58/15=3.87s
- 4. 670/248=2.7s

