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Overview

Synergy

cloud service developed in the context of the INDIGO-DataCloud 
European project which aims to develop a new cloud software 
platform for the scientific community

● https://www.indigo-datacloud.eu/

Main objective

enable a more effective and flexible resource allocation and 
utilization in open Clouds such as OpenStack
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The issue
● In the current OpenStack model:

● the user request fails (and is lost) if no resource can satisfy it

● static partitioning: the resource allocation to the user projects 
can be done only by granting fixed quotas

● one project cannot exceed its own quota even if there are 
unused resources allocated to other projects

● very low global efficiency and an increased cost

● 20 years old problem solved by batch systems

● INDIGO addresses this issue through Synergy
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Synergy

● Synergy is the extensible general purpose management service 
designed by the National Institute for Nuclear Physics (INFN) for 
executing tasks in OpenStack

● It is composed by a collection of pluggable managers

Synergy
manager

manager
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The managers

● Managers provide specific and independent pluggable functionality 
(task) executed periodically or interactively through a RESTful API

● they can interact with each other or with different OpenStack 
services in a loosely coupled way

Synergy
manager

Interaction 
between managersInteraction 

with OS services
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The manager interface

The following piece of code shows the Python abstract base class 
that every manager has to extend:

class Manager(Thread):

def getName(self): # returns the manager name

def getStatus(self): # returns the manager status

def isAutoStart(self): # is AutoStart enabled or disabled?

def setup(self): # allows custom initialization

def destroy(self): # invoked before destroying

def execute(self, cmd): # executes user command synchronously

def task(self): # executed periodically at fixed rate
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Advanced scheduling

● Functionality implemented as collection of specific managers
● different managers can coexist

● Synergy adopts a resources provisioning model based on a fair-
share algorithm to maximize the resources usage in OpenStack

● it guarantees that resources are equally distributed among users

● It provides a persistent priority queuing mechanism for handling 
user requests that can not be immediately fulfilled
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Resource allocation

● Synergy allows the IaaS administrators to allocate a subset of 
resources (dynamic resources) to be shared among different 
projects, besides the ones statically partitioned

50

100

total resources

static
dynamic

● Static resources consumed according the 
standard OpenStack model

● Dynamic resources are handled by 
Synergy which allows the definition of 
fair-share policies:

● list of projects allowed to access to 
the dynamic resources

● shares on resource usages for the 
relevant projects 

● max lifetime for Virtual Machines (this 
is needed to enforce the fair-sharing) 
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The scheduler managers

Five managers implement the fair-share based scheduling 
model

● FairShare-Manager: implements the main fair-share scheduling logic

● It dynamically assigns the proper priority value to every user request

● fair-share algorithm based on the SLURM Priority MultiFactor strategy

● Queue-Manager: provides a persistent priority queue service

● Quota-Manager: it is in charge of handling the quota of all projects

● Nova-Manager: it interacts with Nova components

● Keystone-Manager: it interacts with the Keystone service
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High level architecture

novaQueue M.

FairShare M.

Nova M.

Keysyone M.

Keystone

Quota M.

Synergy

database
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Queue
Manager

Queue
Manager

AMQP

Quota
Manager

Quota
Manager

FairShare
Manager

FairShare
Manager

Nova
Manager

Nova
Manager

Keystone
Manager

Keystone
Manager

Synergy
RESTFulRESTFul

keystonekeystone

novanova

Low level architecture
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Remark

● Synergy will not replace any existing OpenStack service (e.g Nova)
● it may complement their functionality as an independent service

● No changes in the existing OpenStack components are required

● Synergy allows the coexistence of the new advanced resource 
allocation and the standard one of OpenStack (i.e FCFS)
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Test (1/2)

● First Synergy prototype tested at INFN OpenStack/Juno production 
site of EGI Federated Cloud

● Two testing projects set up in fair-share mode: prj_A (70%) and 
prj_B (30%)

● it is assumed that all users have the same share 

● Dynamic resources: 20% of total

80

20

total resources

static
dynamic 70

30

dynamic resources

shares
prj A
prj B
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Test (2/2)

● Automatic robot instantiates VMs  at the same constant rate on 
both projects by using different users

● > 20,000 VMs executed over two days, Cirros images with different 
flavors, VM lifetime limited to 5 min to speed up testing 

● Project resource usage accounted at the end of each period 
measured to be as expected (70% and 30%) within 1%

● Tests coexisted and did not interfere/degrade normal operations of 
other production projects/VOs (not involved in fair-share 
computation)
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The development status
● Synergy will be part of the first Indigo release

● July 2016  

● Code in launchpad
● https://launchpad.net/synergy-service

● https://launchpad.net/synergy-scheduler-manager

● On-going integration with the OpenStack Continuous Integration 
system

https://launchpad.net/synergy-service
https://launchpad.net/synergy-scheduler-manager
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Next steps

● Implement a complete test suite

● test Synergy in the bigger CNRS's production site

● Update Synergy for supporting the latest OpenStack versions

● Improve the fair-share algorithm by implementing the SLURM Fair 
Tree

● Improves the resource usage calculation by considering even CPU 
performance measured with HEPSPEC 2006 (HS06) benchmark (not 
only the CPU wall-clock time)

● The ultimate goal is to have it integrated in the Official OpenStack 
distribution
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Questions?
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