
Synergy
a service for optimizing the resource

 allocation in cloud based environments

Lisa Zangrando
INFN Padova

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

2/17

Overview

Synergy

cloud service developed in the context of the INDIGO-DataCloud
European project which aims to develop a new cloud software
platform for the scientific community

● https://www.indigo-datacloud.eu/

Main objective

enable a more effective and flexible resource allocation and
utilization in open Clouds such as OpenStack

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

3/17

The issue
● In the current OpenStack model:

● the user request fails (and is lost) if no resource can satisfy it

● static partitioning: the resource allocation to the user projects
can be done only by granting fixed quotas

● one project cannot exceed its own quota even if there are
unused resources allocated to other projects

● very low global efficiency and an increased cost

● 20 years old problem solved by batch systems

● INDIGO addresses this issue through Synergy

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

4/17

Synergy

● Synergy is the extensible general purpose management service
designed by the National Institute for Nuclear Physics (INFN) for
executing tasks in OpenStack

● It is composed by a collection of pluggable managers

Synergy
manager

manager

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

5/17

The managers

● Managers provide specific and independent pluggable functionality
(task) executed periodically or interactively through a RESTful API

● they can interact with each other or with different OpenStack
services in a loosely coupled way

Synergy
manager

Interaction
between managersInteraction

with OS services

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

6/17

The manager interface

The following piece of code shows the Python abstract base class
that every manager has to extend:

class Manager(Thread):

def getName(self): # returns the manager name

def getStatus(self): # returns the manager status

def isAutoStart(self): # is AutoStart enabled or disabled?

def setup(self): # allows custom initialization

def destroy(self): # invoked before destroying

def execute(self, cmd): # executes user command synchronously

def task(self): # executed periodically at fixed rate

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

7/17

Advanced scheduling

● Functionality implemented as collection of specific managers
● different managers can coexist

● Synergy adopts a resources provisioning model based on a fair-
share algorithm to maximize the resources usage in OpenStack

● it guarantees that resources are equally distributed among users

● It provides a persistent priority queuing mechanism for handling
user requests that can not be immediately fulfilled

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

8/17

Resource allocation

● Synergy allows the IaaS administrators to allocate a subset of
resources (dynamic resources) to be shared among different
projects, besides the ones statically partitioned

50

100

total resources

static
dynamic

● Static resources consumed according the
standard OpenStack model

● Dynamic resources are handled by
Synergy which allows the definition of
fair-share policies:

● list of projects allowed to access to
the dynamic resources

● shares on resource usages for the
relevant projects

● max lifetime for Virtual Machines (this
is needed to enforce the fair-sharing)

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

9/17

The scheduler managers

Five managers implement the fair-share based scheduling
model

● FairShare-Manager: implements the main fair-share scheduling logic

● It dynamically assigns the proper priority value to every user request

● fair-share algorithm based on the SLURM Priority MultiFactor strategy

● Queue-Manager: provides a persistent priority queue service

● Quota-Manager: it is in charge of handling the quota of all projects

● Nova-Manager: it interacts with Nova components

● Keystone-Manager: it interacts with the Keystone service

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

10/17

High level architecture

novaQueue M.

FairShare M.

Nova M.

Keysyone M.

Keystone

Quota M.

Synergy

database

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

11/17

Queue
Manager

Queue
Manager

AMQP

Quota
Manager

Quota
Manager

FairShare
Manager

FairShare
Manager

Nova
Manager

Nova
Manager

Keystone
Manager

Keystone
Manager

Synergy
RESTFulRESTFul

keystonekeystone

novanova

Low level architecture

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

12/17

Remark

● Synergy will not replace any existing OpenStack service (e.g Nova)
● it may complement their functionality as an independent service

● No changes in the existing OpenStack components are required

● Synergy allows the coexistence of the new advanced resource
allocation and the standard one of OpenStack (i.e FCFS)

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

13/17

Test (1/2)

● First Synergy prototype tested at INFN OpenStack/Juno production
site of EGI Federated Cloud

● Two testing projects set up in fair-share mode: prj_A (70%) and
prj_B (30%)

● it is assumed that all users have the same share

● Dynamic resources: 20% of total

80

20

total resources

static
dynamic 70

30

dynamic resources

shares
prj A
prj B

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

14/17

Test (2/2)

● Automatic robot instantiates VMs at the same constant rate on
both projects by using different users

● > 20,000 VMs executed over two days, Cirros images with different
flavors, VM lifetime limited to 5 min to speed up testing

● Project resource usage accounted at the end of each period
measured to be as expected (70% and 30%) within 1%

● Tests coexisted and did not interfere/degrade normal operations of
other production projects/VOs (not involved in fair-share
computation)

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

15/17

The development status
● Synergy will be part of the first Indigo release

● July 2016

● Code in launchpad
● https://launchpad.net/synergy-service

● https://launchpad.net/synergy-scheduler-manager

● On-going integration with the OpenStack Continuous Integration
system

https://launchpad.net/synergy-service
https://launchpad.net/synergy-scheduler-manager

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

16/17

Next steps

● Implement a complete test suite

● test Synergy in the bigger CNRS's production site

● Update Synergy for supporting the latest OpenStack versions

● Improve the fair-share algorithm by implementing the SLURM Fair
Tree

● Improves the resource usage calculation by considering even CPU
performance measured with HEPSPEC 2006 (HS06) benchmark (not
only the CPU wall-clock time)

● The ultimate goal is to have it integrated in the Official OpenStack
distribution

ISGC 2016
13-18 March 2016 – Taipei, Taiwan

<lisa.zangrando@pd.infn.it>

17/17

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

