
Automatic Stack Management in Large Scientific Applications

Ramesh Naidu Laveti

Centre for Development of Advanced Computing (C-DAC)

Bangalore, India

Contact: rameshl@cdac.in

ISGC - 2016 15-03-2016

mailto:rameshl@cdac.in

Outline

1. Introduction

2. Design of Global Spectral Model

3. Application Program Stack

4. Automatic Stack Management Framework

5. Discussions and Results

6. Conclusions

1. Introduction

Large scientific applications demand compilers to allocate large temporaries on the stack.

What if your computing infrastructure can’t provide enough

stack space??

 Program may become error prone

 May overwrite other memory segments (or) areas of other

program’s address space

 Application may crash

 Application may abort

Example Application - 1

(a) A spectral model kernel using Helmholtz equation

 Where, λ - Longitude, in the interval [0 , 2Π],

 µ - sin(Latitude), in the interval [- 1 , 1], and

 We solve this equation for the unknown 'U' from the known function 'R'. The

discrete values of the function ‘U' will be computed analytically at each (λ , µ)

 Need to be solved with high accuracy and speed

 Many ways to solve a PDE – Spectral Method is one option

Spectral Method

 Spectral method is a numerical method for solving partial differential equations in

which the dependent variables are expanded as a series of basis functions and the

original equations are reduced to a set of algebraic equations.

 Triangular truncation - Infinite series to a finite series

 Derivatives can be computed exactly, Easier to solve, Fast and accurate

 Difficulties in handling very high resolution (T>1000) Compute and data

intensive Hard to implement and simulate……...

Solving

Helmholtz

Equation

2. Change resolution component of a global spectral model - SFM

Uniform Resolution Variable resolution

High Resolution Large

temporaries on stack

Example Application - 2

2. Design details of spectral model kernels

 Parallelization strategy used

 It uses 2-D decomposition method

 So, flexible to run any number of processors (Except a prime number)

 Gives best performance if we choose the number of processors as 2
p
 x 3

q
 x 5

r

where p, q and r are integers

 Portability

 Can run as sequential or shared memory or distributed memory

 It can run on multiple platforms – Little Endian as well as Big Endian

 Good applications to experiment

 Hybrid parallel programming paradigm

 Used – OpenMP + MPI (C, C++ and FOPRTARAN)

3. Application program stack

The stack—a region or a segment of memory in

which local variables are located and function

arguments are passed—is allocated by the

programmer.

 In OpenMP, each thread may have

drastically different stack size requirements.

 OpenMP runtime library generates stack

frames that are not part of the user code,

which could confuse users when finding out

the reasons for stack overflow.

 The simple technique - prevent stack

overflows is manually inspect the stack

segment and the stack pointers to find out

the possibilities of stack overflow.

3. Application program stack…

Manual Stack Inspection

Thread

ID

Stack Start Stack End Stack Pointer Stack Size

(Bytes)

Stack Usage

(Bytes)

Category

0 0x1000 2000 0x1000 2255 0x1000 2121 1024 484 Normal

1 0x1000 3000 0x1000 3255 0x1000 3244 1024 976 Critical

2 0x1000 4000 0x1000 4255 0x1000 4148 1024 592 Normal

3 0x1000 5000 0x1000 5255 0x1000 5201 1024 804 Critical

Table 1: Sample Summary report of stack information of all the threads of an application

3. Application program stack

 Obtain the summary report of the stack usage patterns of all the threads of global

spectral model

 Inspect the stack space used and free space left for a thread

 Classify each thread stack state into two categories:

 Noraml (<80% stack space usage)

 Critical (>80% stack space used).

 Investigate all the threads during the entire period of the application execution and

observe the patterns.

 This helps us to identify the threads which use more than 80% of the stack space

allocated to it and address the stack overflow problem manually.

Manual Stack Inspection

3. Application program stack

Manual Stack Inspection

3. Application program stack

 Stack overflow detection is still made by the developer using the information

produced by gdb.

 If the developer doesn’t identify the overflow, the problem may go unidentified.

 No provision to abort the application immediately when the overflow occurs.

 Estimation of number of control flow cycles may not be possible at compile time.

 Finding unexpected/unidentifiable function calls and control jumps may effect the

worst case stack usage patterns of a program.

 Hardware interrupts or signals may also use stack and it is difficult to get to know

whether they are using dedicated stack space or not.

Manual Stack Inspection - Shortcomings

4. Automatic dynamic stack management

framework

 Analyzes and examines the program's executable file (ELF file).

 Built around the features provided by “gcc” and “gfort” compilers.

 fstack-usage

 fstack-check

 fcallgraph-info

 This method allows us to compute to analyze

 The application stack space consumption patterns

 Possible worst case stack usage prior to execution.

 Provides precise information about the possible maximum stack usage from

each thread.

Phase 1: Static Analysis

4. Automatic dynamic stack management

framework

 Trace the number of read and write operations to the stack

 Record the memory reference information

 Maximum value of the stack pointer (Heuristics)

 Use backtrace to collect the information about currently active function calls

 The information obtained from the selected stack frames

 Information starting with the currently executed frame, its caller and other

frames up in the stack.

 Stack frame info such as: Address of the frame, address of the next frame

down and up, the programming language used, address of the frame's

arguments, address of the frames local variables, the program counter, etc.

 Stack status reports and decision making

Phase 2: Dynamic Analysis and Decision Making

4. Automatic dynamic stack management

framework

5. Experiments and Results

Model

Resolution

% of Stack

Space Used

Stack Tag Overhead due to

heap memory

Overhead due to

Dynamic stack

framework

300 km x 300 km 40.00% Normal -NA- -NA-

150 km x 150 km 58.50% Normal -NA- -NA-

50 km x 50 km 72.50% Normal -NA- -NA-

10 km x 10 km 85.00% Critical 25.00% 4.00%

1 km x 1km 98.00% Critical 25.00% 4.00%

Table 2: Stack memory access patterns and the comparison of overheads incurred by Heap

arrays and dynamic stack management framework

Top panel

Analytical solution of the

Helmholtz Solver

5. Experiments and Results

Middle panel

Numerical solution of the

Helmholtz Solver

Bottom panel

Error in solution of the

Helmholtz Solver

Resolution

256 Longitudes x

 128 Latitudes

Error Range

-0.2 to 1.4

Top panel

Analytical solution of the

Helmholtz Solver

5. Experiments and Results

Middle panel

Numerical solution of the

Helmholtz Solver

Bottom panel

Error in solution of the

Helmholtz Solver

Resolution

1024 Longitudes x

 256 Latitudes

Error Range

-0.2 to 1.4

Conclusions

 A sophisticated 2-Phase solution to handle stack overflows

 Do not introduce much run time overheads (<4% of total turnaround time).

 Handles the large temporaries without user's intervention

 Experienced 21% performance improvements when compared with heap

arrays

 We also noticed that it introduces around 4% overhead, which can be ignored

 The actual gain depends on the size of the temporaries in an application

 Supports sequential and OpenMP applications

 We further enhance our framework to deal with the complex MPI and GPU

programming paradigms

Thank You

