Elastic CNAF Datacenter extension via opportunistic resources

INFN-CNAF

INFN

- National Institute for Nuclear Physics (INFN) is a research institute funded by the Italian government
- Composed by several units
 - 20 units dislocated in the main Italian University Physics Departments
 - 4 Laboratories
 - 3 National Centers dedicated to specific tasks
- CNAF is a National Center dedicated to computing applications

The Tier-1 at INFN-CNAF

- WLCG Grid site dedicated to HEP computing for LHC experiments (ATLAS, CMS, LHCb, ALICE) works with ~30 other scientific groups
- 1.000 WNs , 20.000 computing slots, 200k HS06 and counting.
 - LSF as current Batch System, Condor migration foreseen
- 22PB SAN disk (GPFS), 27PB on tape (TSM) integrated as an HSM
 - Also supporting LTDP for CDF experiment
- Dedicated network channel (LHCOPN, 20Gb/s) with CERN Tier-0 and T1s, plus 20GB/s (LHCONE) with most of the T2s
 - 100Gbps connection in 2017
- Member of HNSciCloud European project for testing hybrid clouds for scientific computing

WAN@CNAF

Extension use-cases

- Elastic opportunistic computing with transient Aruba resources. CMS selected for test&setup
- ReCaS/Bari: extension and management of remote resources
 - These will become pledged resources for CNAF

Use-case 1: Aruba

Pros of Opportunistic computing

• CMS

- Take advantage of (much) more computing resources.
 - CONS: transient availability
- ARUBA
 - Study case in order to provide unused resources to an "always hungry" customer
- INFN-T1
 - Test transparent utilization of remote resources for HEP (proprietary or opportunistic)

Aruba

One of the main Italian resource providers
 Web, host, mail, cloud ...

 Main datacenter in Arezzo (near Florence)

The CMS Experiment at INFN-T1

- 48k HS06 of CPU power, 4PB of online Disk storage and 12PB of tape
- Implemented all majors computing activities
 - Monte Carlo simulations
 - Reconstruction
 - End-user analysis
- The 4 LHC experiments are close enough in requests / workflows
 - extension to the other 3 under development

q

The use-case

- Early agreement CNAF Aruba
 - ARUBA provides an amount of Virtual resources (CPU cycles, RAM, DISK) to deploy a remote testbed
 - VMWare dashboard
 - When Aruba customers require more resources, the CPU Freq. of the provided VMs in the testbed is lowered down to a few MHz (not destroyed!)
- Goal
 - Transparently join these external resources "as if they were" in the local cluster, and have LSF dispatching jobs there when available
 - Tied to CMS-only specifications for the moment

ISGC 2016

- Once fully tested and verified, extension to other experiments is
 - Trivial for other LHC experiments
 - To be studied for non-LHC VOs

VM Management via VMWare

La constante da la constante d	Istituto Nazionale	Fisica Nucleare	admin (Organization Administrator) Preferences Help + Logout						
	🚮 Home 🛆 My Cloud 🗐 🤇	Catalogs 🛛 🍇 Administration 🗋							
Istituto Nazi	onale Fisica Nucle	eare			admin	(Organization Adminis	strator) Preferer	ices Help - L	ogout
🛗 Home 🛆 My Clou	d 🗐 Catalogs 🖓 Ad	Iministration							
Istituto Naziona	le Fisica Nucleare	e			admin (Org	anization Administrator)	Preferences	Help 🗸 Logout	
🛗 Home 🖾 My Cloud	🗊 Catalogs 🍇 Admini:	stration							
Administration	💼 Virtual Dat	tacenters							3
- Cloud Resources			Manage	Monitor		All	•	C 3	
¬	Name	1 Processor		Memory	Storage	A	llocation Model		
Recent Items	✓ vdc1-infn		160.00 GHz	480.00 GB	6,000.00 GE	Allocation Pool			
✓ Members									
🔒 Users				I	I				
🔓 Lost & Found									
✓ Settings									
ig General			\						
Per Email		Resources allocated to our Data center							
Policies									
Guest Personalization	n								
@ Metadata									
ar motadata									

The CMS workflow at CNAF

- Grid pilot jobs submitted to CREAM CEs
 - Late binding: we cannot know in advance what kind of activity it's going to perform
- Multicore only
 - 8 core (or 8 slot) jobs: CNAF dedicates a dynamic partition of WNs to such jobs
- SQUID proxy for Software and Condition DB
- Input files on local GPFS disk, fallback via Xrootd, O(GB) file size
- Output file staged through SRM (StoRM) at CNAF.

The dynamic Multicore partition

- CMS jobs run in a dynamic subset of hosts dedicated to multicore-only jobs.
- Elastic resources shall be member of this subset.

13

Adapting CMS for Aruba

- Main idea: transparent extension
 - Remote WN join the LSF cluster at boot "as if" local to the cluster
- Problems:
 - Remote Virtual WN need read-only access to the cluster shared fs (/usr/share/lsf)
 - VMs have private IP, are behind NAT & FW, outbound connectivity only, but have to be reachable by LSF
 - LSF needs host resolution (IP ↔ hostname) but no DNS available for such hosts

Adapting CMS for Aruba

- Solutions:
- Read-only access to the cluster shared fs
 - Provided through GPFS/AFM
- Host resolution
 - LSF has his own version of /etc/hosts
 - This requires to declare a fixed set of Virtual nodes
- Networking problems solved using dynfarm:
 - Service developed at CNAF to provide integration between LSF and virtualized computing resources.

Remote data access via GPFS AFM

ISGC 2016

- GPFS AFM
 - A cache providing geographic replica of a file system
 - manages RW access to cache
- Two sides
 - Home where the information lives
 - Cache
 - Data written to the cache is copied back to home as quickly as possible
 - Data is copied to the cache when requested
- Configured as Read-only for site extension

Istituto Nazionale di Fisica Nucleare

Dynfarm concepts

- The VM at boot connects to a OpenVPN based service at CNAF
 - It authenticates the connection (X.509)
 - Delivers parameters to setup a tunnel with (only) the required services at CNAF (LSF, CEs, Argus)
 - Routes are defined on each server to the private IPs of the VMs (GRE Tunnels)
 - Other traffic flows through general network

Dynfarm deployment

- VPN Server side, two RPMs:
 - dynfarm-server, dynfarm-client-server
 - In the VPN server at CNAF. First install creates one dynfarm_cred.rpm which must be present in the VMs
- VM side, two RPMs:
 - dynfarm_client, dynfarm_cred (contains CA certificate used by VPN server and a key used by dynfarm-server)
- Management: remote_control <cmd> <args>

Dynfarm workflow

Results

- Early successful attempts from Jun 2015
- Different configurations (tuning) have followed

Results

160GHz total amount of CPU (Intel 2697-v3).
 Assuming 2GHz/core → 10 x 8-cores VMs (possible overbooking)

Results

- Currently the remote VM run the very same jobs delivered to CNAF by GlideinWMS
- Job efficiency on elastic resources can be very good for certain type of jobs (MC)
- Special configuration at GlideIN can specialize delivery for these resources.

Queue	Site	Njobs	Avg_eff	Max_eff	Avc_wct	Avg_cpt
CMS_mc	AR	2984	0.602	0.912	199.805	130.482
CMS_mc	T1	41412	0.707	0.926	117.296	93.203

Use-case 2: ReCaS/Bari

ΙΝΓΝ

Remote extension to ReCaS/Bari

~17.5k HS06, ~30WN, 64 core, 256GB RAM

- 1 core / 1 slot, 4GB/slot, 8,53 HS06/slot (546HS06/WN)
- Dedicated network connection with CNAF:
 - VPN lev. 3, 20Gb/s
 - Routing through CNAF, IP of remote hosts in the same network range (plus 10.10.x.y for ipmi access)
 - Similar to CERN/Wigner extension
- Direct and transparent access from CNAF

Deployment

Two infrastructure VMs to offload network link:

- CVMFS and Frontier SQUID (used by ATLAS and CMS)
 - SQUID requests are redirected to the local VMs
- Cache storage GPFS/AFM
 - 2 server, 10 Gbit
 - 330TB (Atlas, CMS, LHCb)
 - LSF shared file system also replicated

Network traffic (4 weeks)

Current issues and tuning

 Latencies in the shared fs can cause troubles

 Intense I/O can lead to timeout :
 ba-3-x-y: Feb 8 22:56:51 ba-3-9-18 kernel: nfs: server nfsba.cr.cnaf.infn.it not responding, timed out

CMS: fallback to Xrootd (excessive load on the AFM cache)

Comparative Results

Queue	Nodetype	Njobs	Avg_eff	Max_eff	Avg_wct	Avg_cpt
Cms_mc	AR	2984	0.602	0.912	199.805	130.482
Alice	T1	98451	0.848	0.953	16.433	13.942
Atlas_sc	T1	1211890	0.922	0.972	1.247	1.153
Cms_mc	T1	41412	0.707	0.926	117.296	93.203
Lhcb	T1	102008	0.960	0.985	23.593	22.631
Atlas_mc	T1	38157	0.803	0.988	19.289	18.239
Alice	BA	25492	0.725	0.966	14.446	10.592
Atlas	BA	15263	0.738	0.979	1.439	1.077
Cms_mcore	BA	2261	0.444	0.805	146.952	69.735
Lhcb	BA	13873	0.916	0.967	12.998	11.013
Atlas_sc	BA	20268	0.685	0.878	24.378	15.658

Conclusions

Aruba

- Got the opportunity to test our setup on a pure commercial cloud provider
 - Developed dynfarm to extend our network setup
 - Core dynfarm concept should be adaptable to other Batch Systems
 - Gained experience on yet another Cloud Infrastructure: Vmware
- Job efficiency encouraging
 - Even better when we will be able to forward to Aruba only non-IO intensive jobs
- Scale of the test quite small, did not reach any bottleneck
- Tested with CMS, other LHC experiments may join in future
- Accounting problematic due to possible GHz reduction
- Good exercise for HNSciCloud too

ReCaS/Bari

- T1-Bari farm extension "similar" to CERN-Wigner
- Job efficiency (compared to native T1) highly depending on storage usage
 - Better efficiency means job on WN is mainly CPU bound (or input file already in cache before start)
- General scalability limited by the width of dedicated T1→BA link (20Gb/s)
- Assistance on faulty nodes somehow problematic