Science & Technology
<~ Facilities Council

Mesos in a WLCG Tier-1 Grid Site

Andrew Lahiff

International Symposium on Grids and Clouds 2016, Taiwan

Overview

Introduction

Mesos & Marathon

How we’re dealing with dynamic environments
— Service discovery

— Monitoring

Migrating grid services

— Examples of benefits

Moving into production

Introduction

e RALis aTier-1 for all 4 LHC experiments

— This year will provide over 146K HS06 CPU, 13 PB disk, 35
PB tape

— Also support many non-LHC experiments, becoming
increasingly important

e Technology used
— Storage: CASTOR, Ceph (not yet in production)

— Compute: HTCondor, OpenNebula
— Services: HyperV

Long-running services

e At RAL and other WLCG sites, services are
— Running on manually instantiated VMs (or bare metal)
— Configured using configuration management systems

e There are limitations with this model, including

— manual intervention is required to restore services in the
event of problems (service crashes, hypervisor crashes, ...)
— resource utilization not optimal

e many VMs likely have unused resources, no way to make use
of them

— very static environment

* no way to scale capacity to respond to changes in demand
quickly enough to be useful

Avoiding these problems

e 2 fundamental changes are required

— Manage applications using a scheduler
e if an application dies, it will be restarted

e if a machine dies, applications running on it will be re-
scheduled elsewhere

e automated staged-rollouts
e auto scaling
e application-specific scheduling
— Run applications in containers
e removes the dependency between applications & hosts
e enables applications to be quickly started anywhere
e allows for isolation between different applications

Apache Mesos

e What it does

— enables a large group of machines to appear as a single pool
of resources

— abstracts away the whole concept of individual machines

e |ets users manage applications, not machines

— allows you to have multiple schedulers sharing the same
resources

e Features
— fault-tolerant
— used in production at scales of > 10,000 machines
e Consists of 4 major components
— ZooKeeper, Mesos masters, Mesos agents, Frameworks

Mesos architecture

scheduler 1 .

scheduler n

T e

Mesos
master

standby
master

_—E—ee— e e e e e — —

Mesos agent

_—E—ee— e e e e e — —

Mesos agent

container

ZooKeeper

ZooKeeper
- leader election & coordination

Mesos master
- offers resources to frameworks

Frameworks consist of
- scheduler
- receive resource offers
- launch tasks
- executor (optional)
- launched by Mesos agents
- execute tasks

Frameworks

Marathon

— distributed “init” for long-running services

— Placement contraints (nodes, racks, ...)

— Health checks

— Rolling restarts & upgrades

— Handles dependencies between applications
Other frameworks include

— Chronos: distributed “cron”

— Elasticsearch, HDFS, Cassandra, Kafka, Kubernetes, ...

Multiple frameworks can be run on a single Mesos cluster

— Mesos allows you to have multiple distributed systems
sharing the same resources

Deployment at RAL

e |nfrastructure managed by Quattor

— 5 Mesos masters
e ZooKeeper, Mesos master, Marathon, Consul server
e httpd proxies provide SSL & X509 authentication for Uls

— 16 Mesos agents
e 16 CPUs, 24 GB RAM each

e Mesos agent, Docker engine, Consul agent

— Private Docker registry

e |Impressions
— easy to setup basic infrastructure
— very stable

— service discovery, monitoring, logging & security is where
effort is required to ensure a production-quality service

Service discovery

e A significant change: static hostnames in config files no
longer make sense

— hostnames can change at any time

— number of instances of a particular service could change
e How can services find each other?

— One solution: Consul, a distributed tool for service discovery
e Service registration

— Registrator daemon runs on each Mesos agent
e detects Docker containers starting & stopping
— registers services with Consul

* name, hostname, port(s), tags, health checks

Service discovery

e Services can then be accessed in several ways, including:
— DNS, e.g.
logstash-fts3.service.consul
— Consul-template
e daemon which populates configuration files dynamically

e Docker engine configured to use local dnsmasq for DNS

— dnsmasq using Consul for .consul domain

Docker engine 2| Registrator
1 ¢
Consul agent

v

dnsmasq

Mesos agent

Service discovery

e Can also register health checks with Consul
— HTTP, TCP, TTL, script
— Run by each local Consul agent (decentralized)
e Unlike Nagios checks, these can change dynamically
— checks specified as labels on containers
— Registrator registers/de-registers checks as containers come
& go
e Health checks are a critical part of service discovery

— it should be considered normal that some instances of
applications will fail

— essential to prevent unhealthy services from being used
e e.g. DNS lookup will only return healthy services

11

External access to services

e Using HAProxy as a load balancer in front of services

— configuration dynamically updated

— ensures clients can only access healthy instances of services
e Keepalived provides

— a floating IP for each service

— highly available load balancing

HAProxy
Keepalived

\

task

Mesos agent

The internet

floating IP
Mesos agent

/

HAProxy
Keepalived

task

Monitoring

e The container world is different to traditional infrastructure
— hosts not relevant

— containers can move from one host to another

e Traditional monitoring for both metrics & alerts
— static
e can’t handle an application moving from one host to another
— host-centric

* e.g. a myproxy-server process must be running on host X

e Need a different approach
— Metrics
e need to be able to track & aggreggrate multiple containers

— Query-based alerts
e e.g. number of running squids > N

13

Metrics

cAdvisor

— daemon running on each Mesos agent

— collects container resource usage metrics, including
e CPU, load, memory, network, disk

— collects application metrics

e metrics exposed on a port on each container

* no site specific metrics configuration required inside
containers

— metrics tagged by useful information from Mesos
e e.g. application name, task id

— data stored in InfluxDB, Grafana used for visualization

14

Metrics

e Can easily view all instances of a particular application

— irrespective of how many instances there are or what hosts
they’re running on

— note that it wouldn’t be possible to do this with Ganglia

app: logstash-htcondor-history +

CPU usage (total)

150 ms.

61600 370000 &708:00

== logstash-htcondor-history.aeat faec-daf2-11e5-96b8-001dd8b7 1dad

logs o 1fd-daf2-1 b 71dad
Network in
600 kBps
400 kBps
b il M
200108 [Ll“ M., LU
s oL bl Y ‘r.w;,m
0By
" 3/6 00:00 3/6 08:00 3/8 16:00 3/7 00:00 /7 08:00

= logstash-htcondor-history.aea1 faec-daf2-11e5-96b8-001ddBb7 1dad
logstash-htcondor-history.aea221fd-daf2-11e5-96b8-001dd8b71dad

1
il
P&t‘.’f&.,\l.l#:{._h,».u,. s‘.t,.ﬁ"asw’\s,,m,«h\‘ e

7 16:00
current
231ms
225ms

v, b

a7 1600
current
70 kBps
82 kBps

Memory usage

client_http_kbytes_out

8 8 & 8

954 MB
763 M8
s72M8
10
381 M8
0
191 M8 14:00 14:30 15:00
0B == squid.242c59bf-e5f6-11e5-b75d-001dd8b7 1da3
60000 WBOBO0 F/B1600 70000 GTOBO0 A7 16:00
t
curen hits_as_%_of_all_requests
= h hi faec-daf2-1 1dad 746 MiB =
logstash- 1fd-daf2-1 b8-001dd8b71dad 769 MiB &0
50
Network out 4
250 kBps 30
200 kBps 20
150 kBps l J d J U 5
100 kBps . UL
sokeps) l\li l.. | ',‘L;J,l by \.L",'-‘.'M‘IJr\»,,..;,\ M bben ®
iBps U"’ e s WLLTERS QR M te b N T] 14:00 14:30 15:00
0Bos
60000 60800 WB1600 G70000 70800 /71600 = squid.242c59bf-e56-11e5-5750-001d08b7 1da3
current
— logstash-htcondor-history.aeafaec-daf2-11e5-96b8-001dd8b71dad 25.8kBps
logstash-htcondor-hi -daf2-11e5-0608-001dd807 1dad 30.1 kBps

Resource usage metrics

client_http_requests

14:00 14:30 15:00 15:30

== squid.242¢c50bf-e516-11e5-b75d-001dd8b7 1da3

memory_hits_as_%_of_hit_requests

14:00 14:30 15:00 15:30

== $Qquid.242c59bf-e5f6-11e5-b75d-001dd8b71da3

Application metrics
(example: squid)

15

Alerting

e Things will always fail

— e.g. no need for a pager alarm if 1 of 8 FTS3 servers dies

— the important question: is the service degraded (or about to

be) beyond a critical point?

e Mesos infrastracture

— Masters have standard Nagios tests

— Agents like worker nodes in a batch system

e only care if number of healthy agents drops below a threshold

e Services running on Mesos

— Nagios tests on the load balancers

e number of healthy instances of backend servers
e callout if below a minimum threshold

16

Migrating grid services

Grid middleware — typically consist of multiple sub
services running in single VMs

— problems with one can affect others in the same VM

— frequently have multiple instances of all services, even if
not needed

Not easy to split services into multiple VMs
— very inefficient use of resources

— too complicated for most sites to configure this

However
— can split into multiple containers

e each container has a single purpose

e container orchestration combined with dynamic service

discovery makes this both possible & straightforward .

Migrating grid services

e Example: FTS3 server
— typical example of grid middleware

— large number of daemons & crons running in a single VM

e Split into multiple containers, e.g.

fts-server fts-server

fts-bringonline

fts-bringonline

fts-msg
httpd (REST API) # T
httpd (mon) REST API
bdii-update monitoring app
slapd

infosys

large VM multiple (small) containers

Migrating grid services

e At first glance may seem more complicated, but
— greater visibility into what each sub service is doing

— can scale only the components that need to be scaled
instead of everything

top - 21:13:39 up 22 days, 8:41, 1 user, load average: 0.02, 0.01, 0.00
Tasks: 241 total, 1 running, 240 sleeping, 0 stopped, @ zombie

Cpu(s): @.1%us, 0.8%sy, 0.0%ni, 99.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 8052088k total, 3403416k used, 4648672k free, 657620k buffers

Vi

Swap: 2097148k total, Ok used, 2097148k free, 1640172k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
4315 fts3 20 @ 2523m 27m 8672 S 3.0 0.4 616:34.87 fts_server
4714 fts3 20 0 1343m 11m 3996 S 0.3 0.2 112:41.57 fts_bringonline
36305 root 20 @ 658m 19m 4532 S 0.3 ©.3 15:55.63 filebeat
38417 fts3 20 @ 716m 18m 16m S 0.3 0.2 0:00.39 fts_url_copy
39256 fts3 20 @ 709m 1lem 10m S 0.3 @.2 0:00.33 fts_url_copy
39356 root 20 0 15160 1420 988 R 0.3 0.0 0:00.01 top
63558 apache 20 @ 396m 12m 2044 S ©.3 0.2 0:00.18 httpd.worker
1 root 20 @ 23472 1592 1300 S 0.0 0.0 0:03.11 init
2 root 20 ©] 0 S 0.0 0.0 0:00.00 kthr
CPU usage Memory usage
13s 286 MiB
10s 238 MiB L3 bV
750 ms 191 MB - Ty ,“v'
143 MiB
zome l .r ". " - : hi L N 4 'lT n" Ll |.’ il .A.. y B8
Ons 0B
20:10 20:20 20:30 20:40 20:50 21:00 20:10 20:20 20:30 20:40 20:50 21:00
min max current min max current
= fts-bringonine.fts3-devel #4ps 76ms 6l4ps = fts-bringonine.fts3-devel 50.5MB 51.2MB 50.7 MiB
fts-infosys.fts3-devel 77ps 77ms 121ps fts-infosys.fts3-devel 31.3MB 821MB 315MB
fts-mon.fts3-devel 146 ps 115ms 13 ms fts-mon.fts3-devel 75.1 MiB 114.6 MiB 114.4 MiB
= fts-msg.fts3-devel 134ps 8Oms 157ps = fts-msg.fts3-devel 560MB 568MB 56.0MB
= fts-rest.fts3-devel 128ps 357ms 163ms = fts-rest.fts3-devel 704MB 1709MB 1707 MiB
= fts-server.ts3-devel 2ms 1.112s 628ms — fts-serverts3-devel 1091 MB 2541MB 251.3MB

19

Fault tolerance

e One benefit of running services on Mesos is improved
availability due to fault tolerance

— example: an application with 2 running instances

Running tasks

06:00 AO7:OO 08:00 A 09:00 10:00 A 11:00 12:00 A 13:00 14:00 15:00 16:00 17:00 18:00 19:00
logstash-htcondpor-history.14ce957 c-e8f6-1[1e5-b75d-001dd8b7 1da3 logstash-htcondor-history.7107871f-e907-11e5-b75d-001dd8b7 1da3

== |ogstash-htcondpr-history.aealfaec-daf2-11e5-96b8-001dd8b71da4 |== logstash-htcondor-histonfaea221fd-daf2-11e5-96b8-001dd8b7 1da4

Another Mesos master shutdown — no effect

Mesos agent shutdown — task restarted automatically on another host

Task died — restarted automatically (not necessarily on the same host)

1 Mesos master shutdown — no effect 20

Rolling upgrades

e Example of an automated rolling upgrade
— not normal to upgrade running containers: you replace them
— old instances killed only when new ones become healthy

Running tasks

17:30 17:35 17:40 17:45

- version:3.5.13-2 == version:3.5.14-1

Client http requests

Requests directed to

new instances as they
become healthy

- the upgrade is transparent

17:30 17:35 17:40 17:45

Each colour corresponds to a different container

21

Auto scaling

e Automatically scale capacity according to demand

— VMs take minutes to start
e this can be too long

— Containers take seconds to start
e can more quickly respond to spikes in demand
e Scaling based on metrics collected by cAdvisor

— Could use resource usage, e.g. CPU, memory, network
— And/or application metrics, e.g. request rate

22

Auto scaling

e Example: horizontal scaling of squid proxies
— number of containers scales up & down depending on load

InfluxDB

metrics

A 4

autoscale
controller

scaling

A 4

Marathon

Number of instances

11:00 12:00 13:00 14:00 15:00 16:00

Client http requests

11:00 12:00 13:00 14:00 15:00 16:00

Each colour corresponds to a different container
Target # requests per container very low for this example
Number of running instances restricted to be between 2 & 10

23

Managed services

e Example: Elasticsearch framework
— framework designed to manage an Elasticsearch cluster
— launch a multi-node Elasticsearch cluster in seconds
— automatically detects & replaces failed Elasticsearch nodes

‘;ii‘ MEsos

3072MB 16GB

24

Moving into production

e Everything is dynamic
— still (relatively) new technology, things are changing rapidly
e what is difficult to do today maybe simple tomorrow

e Big change in philosophy for service owners

— what were previously critical VMs become more like jobs
running in a batch system on expendable worker nodes

— people used to managing their services manually

e Security

— How to securely & automatically provide host certificates to
containers?

— How to tell if a running container has a vulnerability, e.g.
nss? It may only exist for a few minutes (or less)

25

Summary

e |nvestigated a new way of running services
— containers managed by a scheduler

— many benefits compared to traditional static VMs

e potentially higher availability with less effort & higher
resource utilization

— work is currently underway to make Mesos a production
service at RAL

e Technologies looked as part of Mesos work starting to be
used more generally within the RAL Tier-1, e.g.
— load balancers entering production this week for FTS3

e with Nagios alerts similar to what would be used for services
running on Mesos

— InfluxDB & Grafana for metrics monitoring

26

