
Mesos in a WLCG Tier-1 Grid Site 

Andrew Lahiff 
 
 
 
 

International Symposium on Grids and Clouds 2016, Taiwan 



Overview	
•  Introduc*on	
•  Mesos	&	Marathon	
•  How	we’re	dealing	with	dynamic	environments	

–  Service	discovery	
–  Monitoring	

•  Migra*ng	grid	services	
–  Examples	of	benefits	

•  Moving	into	produc*on	

1	



Introduc/on	
•  RAL	is	a	Tier-1	for	all	4	LHC	experiments	

–  This	year	will	provide	over	146K	HS06	CPU,	13	PB	disk,	35	
PB	tape	

–  Also	support	many	non-LHC	experiments,	becoming	
increasingly	important	

•  Technology	used	
–  Storage:	CASTOR,	Ceph	(not	yet	in	produc*on)	
–  Compute:	HTCondor,	OpenNebula	
–  Services:	HyperV	

2	



Long-running	services	
•  At	RAL	and	other	WLCG	sites,	services	are	

–  Running	on	manually	instan*ated	VMs	(or	bare	metal)	
–  Configured	using	configura*on	management	systems	

•  There	are	limita*ons	with	this	model,	including	
–  manual	interven*on	is	required	to	restore	services	in	the	
event	of	problems	(service	crashes,	hypervisor	crashes,	...)	

–  resource	u*liza*on	not	op*mal	
•  many	VMs	likely	have	unused	resources,	no	way	to	make	use	
of	them	

–  very	sta*c	environment	
•  no	way	to	scale	capacity	to	respond	to	changes	in	demand	
quickly	enough	to	be	useful	

3	



Avoiding	these	problems	
•  2	fundamental	changes	are	required	

–  Manage	applica/ons	using	a	scheduler	
•  if	an	applica*on	dies,	it	will	be	restarted	
•  if	a	machine	dies,	applica*ons	running	on	it	will	be	re-
scheduled	elsewhere	

•  automated	staged-rollouts	
•  auto	scaling	
•  applica*on-specific	scheduling	

–  Run	applica/ons	in	containers	
•  removes	the	dependency	between	applica*ons	&	hosts	
•  enables	applica*ons	to	be	quickly	started	anywhere	
•  allows	for	isola*on	between	different	applica*ons	

4	



Apache	Mesos	
•  What	it	does	

–  enables	a	large	group	of	machines	to	appear	as	a	single	pool	
of	resources	

–  abstracts	away	the	whole	concept	of	individual	machines	
•  lets	users	manage	applica*ons,	not	machines	

–  allows	you	to	have	mul*ple	schedulers	sharing	the	same	
resources	

•  Features	
–  fault-tolerant	
–  used	in	produc*on	at	scales	of	>	10,000	machines	

•  Consists	of	4	major	components	
–  ZooKeeper,	Mesos	masters,	Mesos	agents,	Frameworks	

5	



Mesos	architecture	

scheduler	1	 scheduler	n	

Mesos	
master	

standby	
master	

standby	
master	

ZooKeeper	

Mesos	agent	

task	

executor	
Mesos	agent	

task	 container	

...

ZooKeeper	
-  leader	elec*on	&	coordina*on	
	
Mesos	master	
-  offers	resources	to	frameworks	
	
Frameworks	consist	of	
-  scheduler	

-  receive	resource	offers	
-  launch	tasks	

-  executor	(op*onal)	
-  launched	by	Mesos	agents	
-  execute	tasks	

6	



Frameworks	
•  Marathon	

–  distributed	“init”	for	long-running	services	
–  Placement	contraints	(nodes,	racks,	...)	
–  Health	checks	
–  Rolling	restarts	&	upgrades	
–  Handles	dependencies	between	applica*ons	

•  Other	frameworks	include	
–  Chronos:	distributed	“cron”	
–  Elas*csearch,	HDFS,	Cassandra,	Kaia,	Kubernetes,	...	

•  Mul*ple	frameworks	can	be	run	on	a	single	Mesos	cluster	
–  Mesos	allows	you	to	have	mul*ple	distributed	systems	
sharing	the	same	resources	

7	



Deployment	at	RAL	
•  Infrastructure	managed	by	Qualor	

–  5	Mesos	masters	
•  ZooKeeper,	Mesos	master,	Marathon,	Consul	server	
•  hlpd	proxies	provide	SSL	&	X509	authen*ca*on	for	UIs	

–  16	Mesos	agents	
•  16	CPUs,	24	GB	RAM	each	
•  Mesos	agent,	Docker	engine,	Consul	agent	

–  Private	Docker	registry	
•  Impressions	

–  easy	to	setup	basic	infrastructure	
–  very	stable	
–  service	discovery,	monitoring,	logging	&	security	is	where	
effort	is	required	to	ensure	a	produc*on-quality	service	

8	



Service	discovery	
•  A	significant	change:	sta*c	hostnames	in	config	files	no	

longer	make	sense	
–  hostnames	can	change	at	any	*me	
–  number	of	instances	of	a	par*cular	service	could	change	

•  How	can	services	find	each	other?	
–  One	solu*on:	Consul,	a	distributed	tool	for	service	discovery	

•  Service	registra*on	
–  Registrator	daemon	runs	on	each	Mesos	agent	

•  detects	Docker	containers	star*ng	&	stopping	
–  registers	services	with	Consul	

•  name,	hostname,	port(s),	tags,	health	checks	

9	



Service	discovery	
•  Services	can	then	be	accessed	in	several	ways,	including:	

–  DNS,	e.g.	
logstash-qs3.service.consul	

–  Consul-template	
•  daemon	which	populates	configura*on	files	dynamically	

•  Docker	engine	configured	to	use	local	dnsmasq	for	DNS	
–  dnsmasq	using	Consul	for	.consul	domain	

Mesos	agent	

Consul	agent	

Registrator	

dnsmasq	

Docker	engine	

10	



Service	discovery	
•  Can	also	register	health	checks	with	Consul	

–  HTTP,	TCP,	TTL,	script	
–  Run	by	each	local	Consul	agent	(decentralized)	

•  Unlike	Nagios	checks,	these	can	change	dynamically	
–  checks	specified	as	labels	on	containers	
–  Registrator	registers/de-registers	checks	as	containers	come	
&	go	

•  Health	checks	are	a	cri*cal	part	of	service	discovery	
–  it	should	be	considered	normal	that	some	instances	of	
applica*ons	will	fail	

–  essen*al	to	prevent	unhealthy	services	from	being	used	
•  e.g.	DNS	lookup	will	only	return	healthy	services	

11	



External	access	to	services	
•  Using	HAProxy	as	a	load	balancer	in	front	of	services	

–  configura*on	dynamically	updated	
–  ensures	clients	can	only	access	healthy	instances	of	services	

•  Keepalived	provides	
–  a	floa*ng	IP	for	each	service		
–  highly	available	load	balancing	

HAProxy	
Keepalived	

HAProxy	
Keepalived	

Mesos	agent	

task	

Mesos	agent	

task	

floa*ng	IP	
The	internet	

12	



Monitoring	
•  The	container	world	is	different	to	tradi*onal	infrastructure	

–  hosts	not	relevant	
–  containers	can	move	from	one	host	to	another	

•  Tradi*onal	monitoring	for	both	metrics	&	alerts	
–  sta*c	

•  can’t	handle	an	applica*on	moving	from	one	host	to	another	
–  host-centric	

•  e.g.	a	myproxy-server	process	must	be	running	on	host	X	

•  Need	a	different	approach	
–  Metrics	

•  need	to	be	able	to	track	&	aggreggrate	mul*ple	containers	
–  Query-based	alerts	

•  e.g.	number	of	running	squids	>	N	
	

13	



Metrics	
•  cAdvisor	

–  daemon	running	on	each	Mesos	agent	
–  collects	container	resource	usage	metrics,	including	

•  CPU,	load,	memory,	network,	disk	
–  collects	applica*on	metrics	

•  metrics	exposed	on	a	port	on	each	container	
•  no	site	specific	metrics	configura*on	required	inside	
containers	

–  metrics	tagged	by	useful	informa*on	from	Mesos	
•  e.g.	applica*on	name,	task	id	

–  data	stored	in	InfluxDB,	Grafana	used	for	visualiza*on	

14	



Metrics	
•  Can	easily	view	all	instances	of	a	par*cular	applica*on	

–  irrespec*ve	of	how	many	instances	there	are	or	what	hosts	
they’re	running	on	

–  note	that	it	wouldn’t	be	possible	to	do	this	with	Ganglia	

Resource	usage	metrics	

Applica1on	metrics	
(example:	squid)	

15	



Aler/ng	
•  Things	will	always	fail	

–  e.g.	no	need	for	a	pager	alarm	if	1	of	8	FTS3	servers	dies	
–  the	important	ques*on:	is	the	service	degraded	(or	about	to	
be)	beyond	a	cri*cal	point?	

•  Mesos	infrastracture	
–  Masters	have	standard	Nagios	tests	
–  Agents	like	worker	nodes	in	a	batch	system	

•  only	care	if	number	of	healthy	agents	drops	below	a	threshold	

•  Services	running	on	Mesos	
–  Nagios	tests	on	the	load	balancers	

•  number	of	healthy	instances	of	backend	servers	
•  callout	if	below	a	minimum	threshold	

16	



Migra/ng	grid	services	
•  Grid	middleware	–	typically	consist	of	mul*ple	sub	

services	running	in	single	VMs	
–  problems	with	one	can	affect	others	in	the	same	VM	
–  frequently	have	mul*ple	instances	of	all	services,	even	if	
not	needed	

•  Not	easy	to	split	services	into	mul*ple	VMs	
–  very	inefficient	use	of	resources	
–  too	complicated	for	most	sites	to	configure	this	

•  However	
–  can	split	into	mul*ple	containers	

•  each	container	has	a	single	purpose	
•  container	orchestra*on	combined	with	dynamic	service	
discovery	makes	this	both	possible	&	straighuorward	

17	



Migra/ng	grid	services	
•  Example:	FTS3	server	

–  typical	example	of	grid	middleware	
–  large	number	of	daemons	&	crons	running	in	a	single	VM	

•  Split	into	mul*ple	containers,	e.g.	

qs-server	
qs-bringonline	

qs-msg	
hlpd	(REST	API)	
hlpd	(mon)	
bdii-update	

slapd	
...	

large	VM	

qs-server	

qs-bringonline	

REST	API	

monitoring	app	

infosys	

mul1ple	(small)	containers	

qs-msg	

18	



Migra/ng	grid	services	
•  At	first	glance	may	seem	more	complicated,	but	

–  greater	visibility	into	what	each	sub	service	is	doing	
–  can	scale	only	the	components	that	need	to	be	scaled,	
instead	of	everything	

19	



Fault	tolerance	
•  One	benefit	of	running	services	on	Mesos	is	improved	

availability	due	to	fault	tolerance	
–  example:	an	applica*on	with	2	running	instances	

Task	died	–	restarted	automa*cally	(not	necessarily	on	the	same	host)	

Mesos	agent	shutdown	–	task	restarted	automa*cally	on	another	host	

1	Mesos	master	shutdown	–	no	effect	

Another	Mesos	master	shutdown	–	no	effect	

20	



Rolling	upgrades	
•  Example	of	an	automated	rolling	upgrade	

–  not	normal	to	upgrade	running	containers:	you	replace	them	
–  old	instances	killed	only	when	new	ones	become	healthy	

Requests	directed	to	
new	instances	as	they	
become	healthy	
-  the	upgrade	is	transparent	

Each	colour	corresponds	to	a	different	container	
21	



Auto	scaling	
•  Automa*cally	scale	capacity	according	to	demand	

–  VMs	take	minutes	to	start	
•  this	can	be	too	long	

–  Containers	take	seconds	to	start	
•  can	more	quickly	respond	to	spikes	in	demand	

•  Scaling	based	on	metrics	collected	by	cAdvisor	
–  Could	use	resource	usage,	e.g.	CPU,	memory,	network	
–  And/or	applica*on	metrics,	e.g.	request	rate	

22	



Auto	scaling	
•  Example:	horizontal	scaling	of	squid	proxies	

–  number	of	containers	scales	up	&	down	depending	on	load	

autoscale	
controller	 Marathon	

InfluxDB	

metrics	

scaling	

Each	colour	corresponds	to	a	different	container	
Target	#	requests	per	container	very	low	for	this	example	

Number	of	running	instances	restricted	to	be	between	2	&	10	

23	



Managed	services	
•  Example:	Elas*csearch	framework	

–  framework	designed	to	manage	an	Elas*csearch	cluster	
–  launch	a	mul*-node	Elas*csearch	cluster	in	seconds	
–  automa*cally	detects	&	replaces	failed	Elas*csearch	nodes	

24	



Moving	into	produc/on	
•  	Everything	is	dynamic	

–  s*ll	(rela*vely)	new	technology,	things	are	changing	rapidly	
•  what	is	difficult	to	do	today	maybe	simple	tomorrow	

•  Big	change	in	philosophy	for	service	owners	
–  what	were	previously	cri*cal	VMs	become	more	like	jobs	
running	in	a	batch	system	on	expendable	worker	nodes	

–  people	used	to	managing	their	services	manually	
•  Security	

–  How	to	securely	&	automa*cally	provide	host	cer*ficates	to	
containers?	

–  How	to	tell	if	a	running	container	has	a	vulnerability,	e.g.	
nss?	It	may	only	exist	for	a	few	minutes	(or	less)	

25	



Summary	
•  Inves*gated	a	new	way	of	running	services	

–  containers	managed	by	a	scheduler	
–  many	benefits	compared	to	tradi*onal	sta*c	VMs	

•  poten*ally	higher	availability	with	less	effort	&	higher	
resource	u*liza*on	

–  work	is	currently	underway	to	make	Mesos	a	produc*on	
service	at	RAL	

•  Technologies	looked	as	part	of	Mesos	work	star*ng	to	be	
used	more	generally	within	the	RAL	Tier-1,	e.g.	
–  load	balancers	entering	produc*on	this	week	for	FTS3	

•  with	Nagios	alerts	similar	to	what	would	be	used	for	services	
running	on	Mesos	

–  InfluxDB	&	Grafana	for	metrics	monitoring	
26	


