

TEAM Munich Network Management Team

Environmental Exascale Computing

Dieter Kranzlmüller

Munich Network Management Team Ludwig-Maximilians-Universität München (LMU) & Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities

High(est) Performance Computing in Germany

- Combination of the 3 German national supercomputing centers:
 - John von Neumann Institute for Computing (NIC), Jülich
 - High Performance Computing Center Stuttgart (HLRS)
 - Leibniz Supercomputing Centre (LRZ), Garching n. Munich
- Founded on 13. April 2007
- Hosting member of PRACE (Partnership for Advanced Computing in Europe)

PRACE Research Infrastructure Created

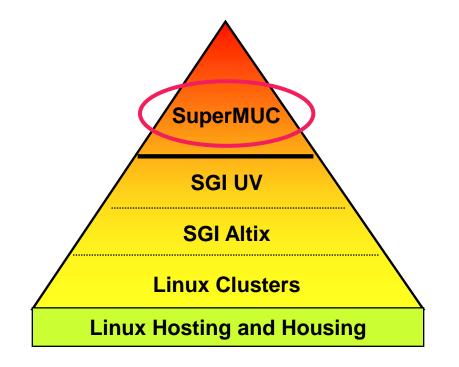
- Establishment of the legal framework
 - PRACE AISBL created with seat in Brussels in April (Association Internationale Sans But Lucratif)
 - 20 members representing 20 European countries
 - Inauguration in Barcelona on June 9
- Funding secured for 2010 2015
 - 400 Million € from France, Germany, Italy, Spain
 Provided as Tier-0 services on TCO basis
 - Funding decision for 100 Million € in The Netherlands expected soon
 - 70+ Million € from EC FP7 for preparatory and implementation Grants INFSO-RI-211528 and 261557 Complemented by ~ 60 Million € from PRACE members

PRACE Tier-0 Systems

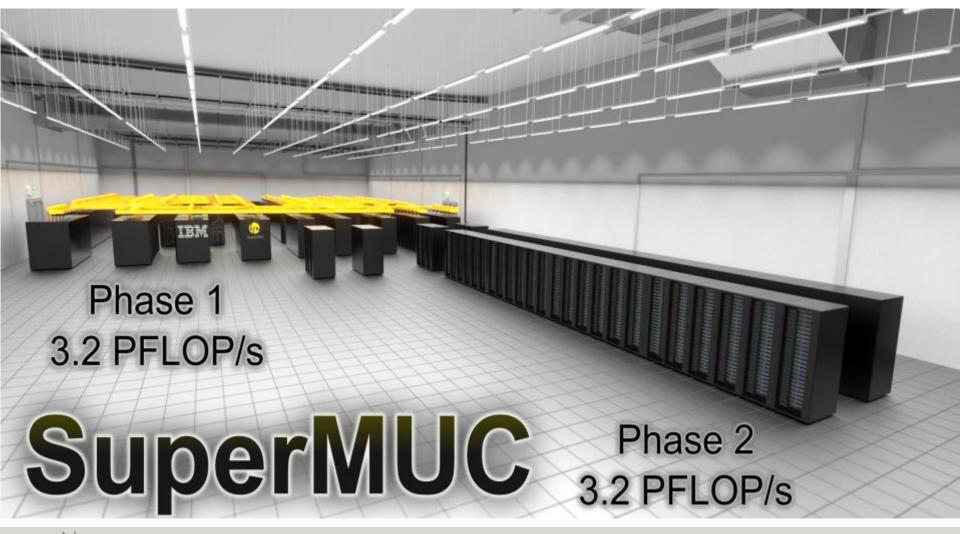
Curie @ GENCI: Bull Cluster, 1.7 PFlop/s

LUDWIG-MAXIMILIANS UNIVERSITÄT

- FERMI @ CINECA: IBM BG/Q, 2.1 PFlop/s
- Hermit @ HLRS: Cray XE6, 1 Pflop/s
- JUQUEEN @ FZJ: IBM Blue Gene/Q, 5.9 PFlop/s
- MareNostrum @ BSC:
 IBM System X iDataPlex, 1 PFlop/s
- SuperMUC @ LRZ: IBM System X iDataPlex, 3.2 PFlop/s



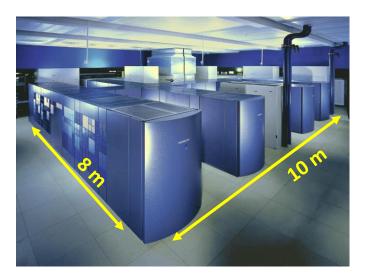
MNM D. Kranzlmüller


- European
 Supercomputing Centre
- National Supercomputing Centre
 - Regional Computer
 Centre for all
 Bavarian Universities
 - Computer Centre for all Munich Universities

SuperMUC Phase 1 + 2

MNM D. Kranzlmüller

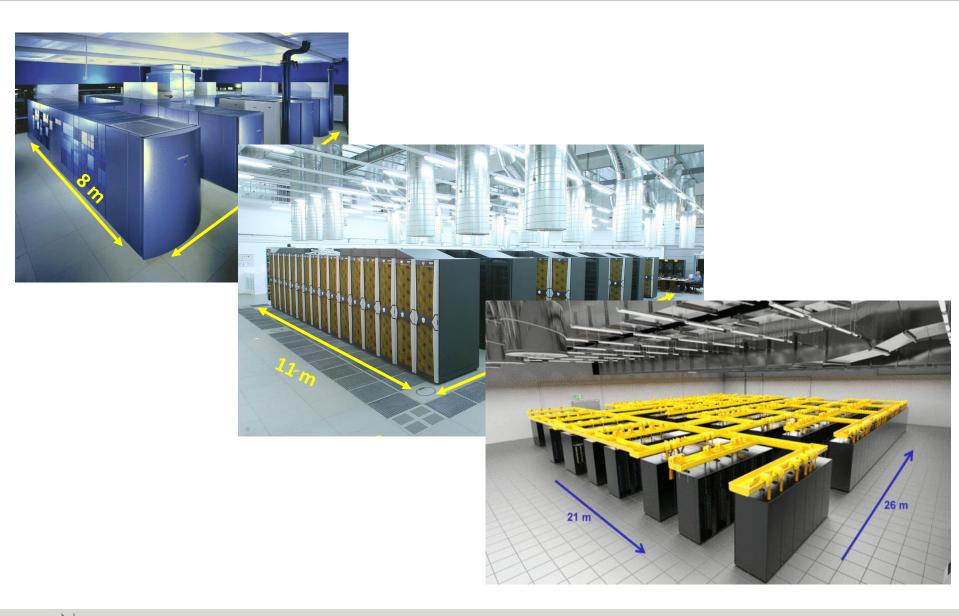
TEAM Munich Network Management Team



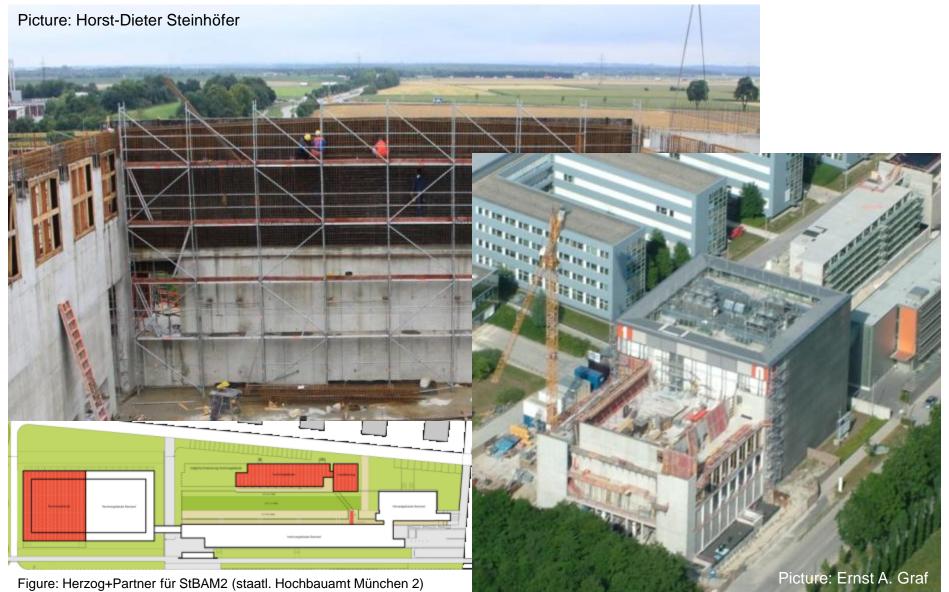
Challenges in Programming and Using these Supercomputers

SuperMUC and its predecessors

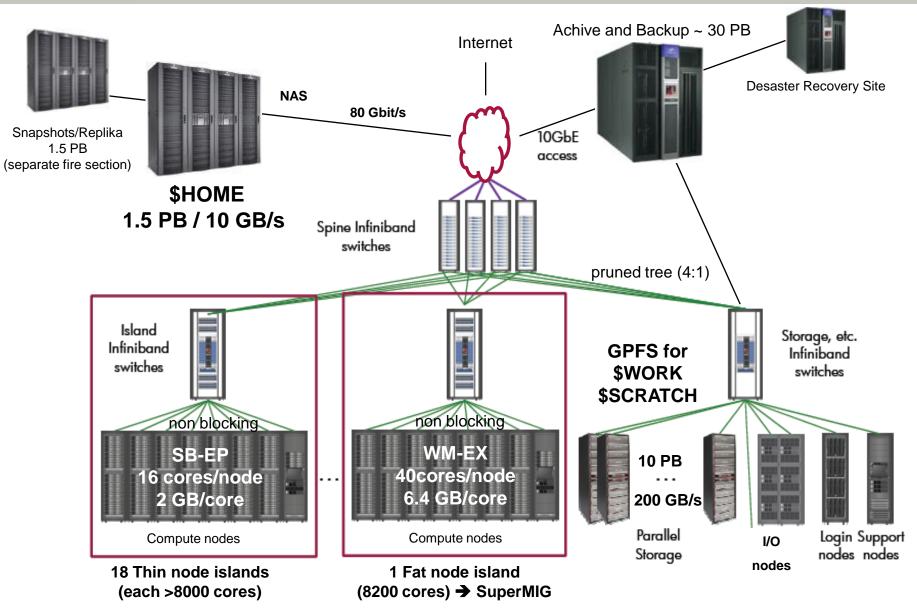
17


SuperMUC and its predecessors

SuperMUC and its predecessors

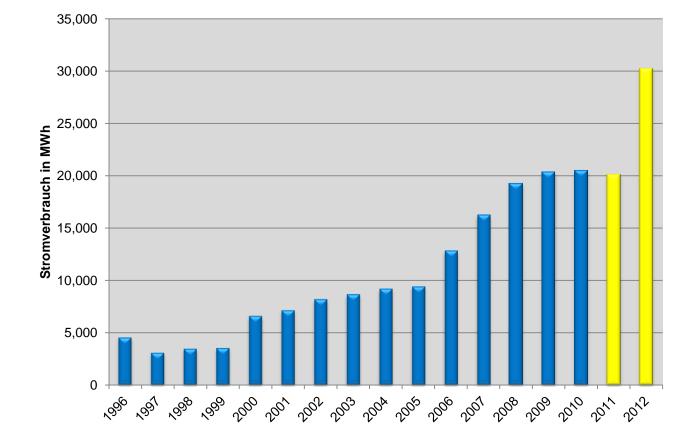


٢Z



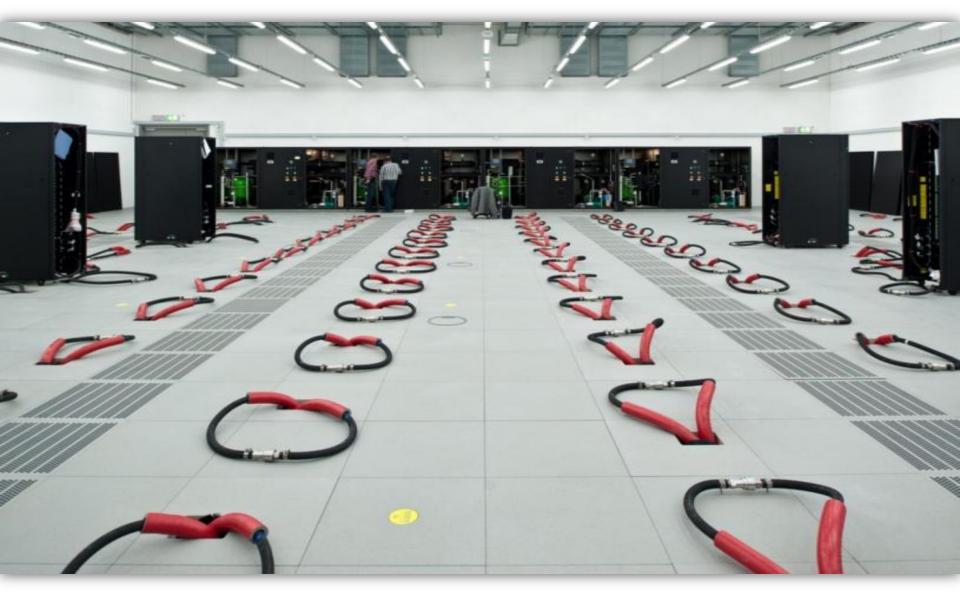
LRZ Building Extension

SuperMUC Architecture



LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

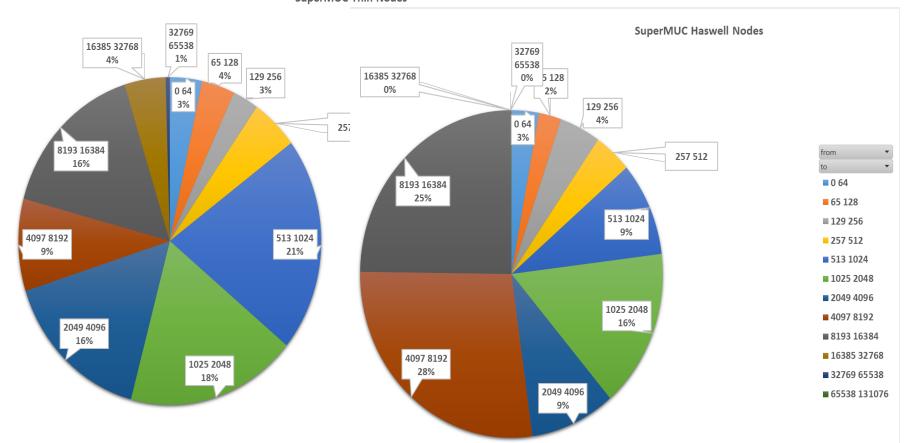
Cooling SuperMUC

SuperMUC Phase 2 @ LRZ

lrz

Photos: Torsten Bloth, Lenovo

High Energy Efficiency


- Usage of Intel Xeon E5 2697v3 processors
- Direct liquid cooling
 - 10% power advantage over air cooled system
 - 25% power advantage due to chiller-less cooling
- ✓ Energy-aware scheduling
 - 6% power advantage
 - ~40% power advantage
 - Total annual savings of ~2 Mio. €
 for SuperMUC Phase 1 and 2

Increasing numbers

Date	System	Flop/s	Cores
2000	HLRB-I	2 Tflop/s	1512
2006	HLRB-II	62 Tflop/s	9728
2012	SuperMUC	3200 Tflop/s	155656
2015	SuperMUC Phase II	3.2 + 3.2 Pflop/s	229960

SuperMUC Jobsize 2015 (in Cores)

SuperMUC Thin Nodes

- Size: number of cores > 100.000
- Complexity/Heterogeneity
- Reliability/Resilience
- Energy consumption as part of Total Cost of Ownership (TCO)
 - Execute codes with optimal power consumption
 (or within a certain power band) → Frequency scaling
 - Optimize for energy-to-solution
 - → Allow more codes within given budget
 - Improved performance
 - ➔ (in most cases) improved energy-to-solution

July 2013:

1st LRZ Extreme Scale Workshop

- Participants:
 - 15 international projects
- Prerequisites:
 - Successful run on 4 islands (32768 cores)
- Participating Groups (Software packages):
 - LAMMPS, VERTEX, GADGET, WaLBerla, BQCD, Gromacs, APES, SeisSol, CIAO
- Successful results (> 64000 Cores):
 - Invited to participate in PARCO Conference (Sept. 2013) including a publication of their approach

- Regular SuperMUC operation
 - 4 Islands maximum

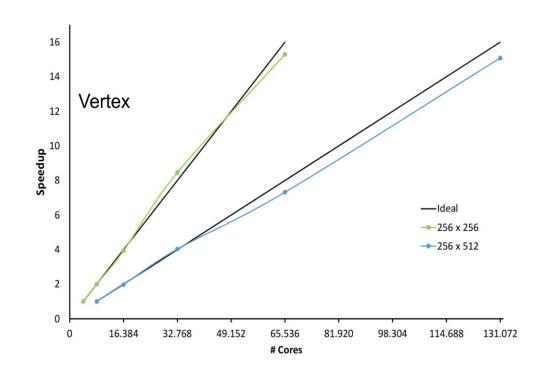
LUDWIG-MAXIMILIANS

- Batch scheduling system
- Entire SuperMUC reserved 2,5 days for challenge:
 - 0,5 Days for testing
 - 2 Days for executing
 - 16 (of 19) Islands available
- Consumed computing time for all groups:
 - 1 hour of runtime = 130.000 CPU hours
 - 1 year in total

Name	MPI	# cores	Description	TFlop/s/island	TFlop/s max
Linpack	IBM	☆ 128000	TOP500	161	2560
Vertex	IBM	☆ 128000	Plasma Physics	15	245
GROMACS	IBM, Intel	👷 64000	Molecular Modelling	40	110
Seissol	IBM	👷 64000	Geophysics	31	95
waLBerla	IBM	☆ 128000	Lattice Boltzmann	5.6	90
LAMMPS	IBM	☆ 128000	Molecular Modelling	5.6	90
APES	IBM	👷 64000	CFD	6	47
BQCD	Intel	128000	Quantum Physics	10	27

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU


5 Software packages were running on max 16 islands:

– LAMMPS

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN **Results**

- VERTEX
- GADGET
- WaLBerla
- BQCD

VERTEX reached 245 TFlop/s on 16 islands (A. Marek)

- Lessons learned → Stability and scalability
- LRZ Extreme Scale Benchmark Suite (LESS) will be available in two versions: public and internal
- All teams will have the opportunity to run performance benchmarks after upcoming SuperMUC maintenances
- 2nd LRZ Extreme Scaling Workshop → 2-5 June 2014
 - Full system production runs on 18 islands with sustained Pflop/s (4h SeisSol, 7h Gadget)
 - 4 existing + 6 additional full system applications
 - High I/O bandwidth in user space possible (66 GB/s of 200 GB/s max)
 - Important goal: minimize energy*runtime (3-15 W/core)
 - Extreme Scale-Out with new SuperMUC Phase 2

- 12 May 12 June 2015 (30 days)
- Selected Group of Early Users
- Nightly Operation: general queue max 3 islands
- Daytime Operation: special queue max 6 islands (full system)
- Total available: 63,432,000 core hours
- Total used: 43,758,430 core hours (Utilisation: 68.98%)

Lessons learned (2015):

- Preparation is everything
- Finding Heisenbugs is difficult
- MPI is at its limits
- Hybrid (MPI+OpenMP) is the way to go
 - I/O libraries getting even more important

Partnership Initiative Computational Sciences πCS

Individualized services for selected scientific groups – flagship role

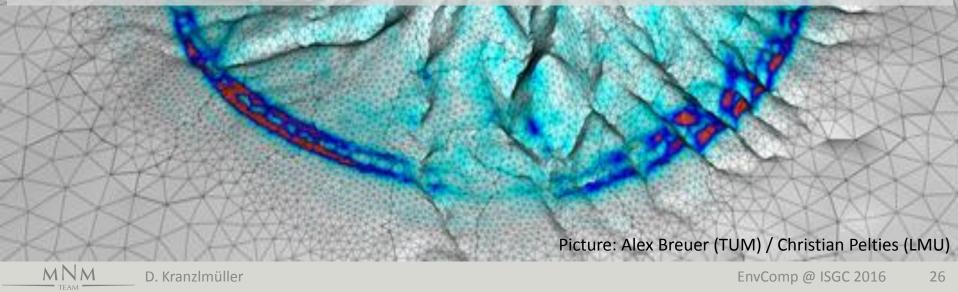
- Dedicated point-of-contact
- Individual support and guidance and targeted training &education
- Planning dependability for use case specific optimized IT infrastructures
- Early access to latest IT infrastructure (hard- and software) developments and specification of future requirements
- Access to IT competence network and expertise at CS and Math departments

Partner contribution

- Embedding IT experts in user groups
- Joint research projects (including funding)
- Scientific partnership equal footing joint publications

LRZ benefits

- Understanding the (current and future) needs and requirements of the respective scientific domain
- Developing future services for all user groups
- Thematic focusing: Environmental Computing


SeisSol - Numerical Simulation of Seismic Wave Phenomena

Dr. Christian Pelties, Department of Earth and Environmental Sciences (LMU) Prof. Michael Bader, Department of Informatics (TUM)

1,42 Petaflop/s on 147.456 Cores of SuperMUC (44,5 % of Peak Performance)

http://www.uni-muenchen.de/informationen_fuer/presse/presseinformationen/2014/pelties_seisol.html

- The number of compute cores, the complexity (and heterogeneity) is steadily increasing
- Users need to possibility to reliably execute (and optimize) their codes on the full size machines with more than 100.000 cores
- The Extreme Scaling Workshop Series @ LRZ offers a number of incentives for users → Next Workshop Spring 2016
- The lessons learned from the Extreme Scaling Workshop are very valuable for the operation of the center
- The LRZ Partnership Initiative Computational Science (piCS) tries to improve user support

http://www.sciencedirect.com/science/article/pii/S1877050914003433

Environmental Exascale Computing

Dieter Kranzlmüller kranzlmueller@lrz.de

