Details about the HEPiX Forum may be found at: <u>https://www.hepix.org/</u>

IPv6-only networking for WLCG

David Kelsey (STFC, UKRI), Andrea Sciabà (CERN) on behalf of the HEPiX IPv6 Working Group

> ISGC2021 online conference 26 March 2021

On behalf of all members of the HEPiX IPv6 working group

Recently active in the HEPiX IPv6 Working Group

- M Babik (CERN), M Bly (RAL), T Chown (Jisc), D Christidis (U Texas/ATLAS), J Chudoba (Prague), C Condurache (EGI.eu), C Grigoras (CERN/ALICE), B Hoeft (KIT), D P Kelsey (RAL), E Martelli (CERN), S McKee (U Michigan), R Nandakumar (RAL/LHCb), K Ohrenberg (DESY), F Prelz (INFN), D Rand (Imperial), A Sciabà (CERN/CMS), D Stockland (Imperial)
- Many more in the past and others join from time to time
- and thanks also to WLCG operations, WLCG sites, LHC experiments, networking teams, monitoring groups, storage developers...

26 Mar 2021

Outline

- What is WLCG? And why do we want to use IPv6 networking?
- WLCG transition to dual-stack IPv4/IPv6
- Recent news from the HEPiX IPv6 working group
- WLCG data transfers fraction over IPv6?
- Monitoring (Experiment Test Framework)
- IPv6-only networking (Phase 3 of our transition)
- Lessons for other Infrastructures and Research Communities
- Summary

For WG meetings see (since Feb 2020 – no longer face to face!) https://indico.cern.ch/category/3538/

HEPIX

https://home.cern/science/computing/grid

- Global computing resources for the storage, distribution and analysis of the data generated by CERN Large Hadron Collider (LHC)
- ~900 000 computer cores

What is WLCG?

- >170 sites in 42 countries
- >12 000 physicists around the world
 - with near real-time access to LHC data
 - and the power to process it

Why does WLCG want to use IPv6?

- Survey of 18 major HEP sites (Sep 2010) "IPv6 readiness"
 - NRENs ready, Universities and Labs not ready, several reported lack of IPv4 addresses including CERN
- HEPiX meeting (Nov 2010) IANA predicts IPv4 address exhaustion
- Offers of opportunistic CPU resources expected (IPv6-only)
- Our Grid middleware, software, storage and technology was not yet IPv6 capable
 - Will take a long time to fix this better get started!
- HEPiX decided to create a working group (started April 2011)
- Growth of Virtual Machines predictions of explosion of network addresses needed
- Phase 1: 2011-16 Evaluation of software, Use of testbeds, persuading technology providers to supply IPv6 access
- Phase 2: 2016-20 Deploy dual-stack IPv6/IPv4 storages & services
- Phase 3: 2020 onwards Plan for move to IPv6-only services

HEP

In General: how many IPv6 Users around the world (from Cisco 6Lab)

https://6lab.cisco.com/stats/index.php?option=users

HEPIX

WLCG Management Board decision – aim for all Tier 1s by April 2018

& large number of Tier 2s by end of LHC Run 2 (end 2018)

IPv6, Tier-1 storage & FTS

- FTS* servers at BNL, CERN, and RAL work in dual stack
 - Fermilab FTS is still IPv4-only
 - CMS/Fermilab now use the CERN FTS server, so IPv6 transfers are being used
- FTS transfers happen via IPv6 at most Tier-1s
- IPv6 transfers do not happen at RRC-KI (Moscow)

* FTS = File Transfer Service

Experiment	Fraction of T1 storage accessible via IPv6
ALICE	78%
ATLAS	96%
CMS	100%
LHCb	94%
Overall	96%

HEP

IPv6 traffic on LHCOPN/LHCONE at CERN

LHCOPN and LHCONE IPv4 and IPv6 traffic volumes seen at CERN Tier0

IPv4 and IPv6 traffic volumes month by month

IPv6 traffic on LHCOPN & LHCONE as seen at CERN

- ~50% of all traffic is IPv6
- From June 2019 onwards

LINK to these plots

26 Mar 2021

80000

60000

40000

20000

HEPIX

IPv6 deployment at Tier-2 sites

- The deployment campaign was launched in November 2017
- Steady progress (status)
 - About 78% of Tier-2 sites have storage

Tier-2 IPv6 deployment status [12-03-2021]

Region

Experiment	Fraction of T2 storage accessible via IPv6
ALICE	86%
ATLAS	62%
CMS	93%
LHCb	75%
Overall	77%

Tier-2 status (cont'd)

- Progress is slower and slower
 - The cause is that remaining sites are the ones having the most difficulties
 - Typical example: IPv6 not a priority for the campus

HEPIX

Recent news from IPv6 working group & WLCG Data Transfers over IPv6

Recent news from the working group

- WLCG MB mandates complete deployment of dual-stack storage and encourages to be ready for IPv6-only batch nodes (23 Feb 2021 meeting)
- Data transfers move from SRM, GSIFTP to XRootD and https/webdav
 - Should all work over IPv6 but FTS IP monitoring limited to GSIFTP & SRM
 - FTS will extend IP stack monitoring to all protocols in the coming months
- Some data transfers between sites which are both IPv6 capable still go over IPv4 problems are still to be understood
- We encourage deployment of dual-stack worker nodes everywhere
- New IPv6-only testbed at CERN
- Sampling network traffic (INFN) to look for IPv6-only problems
- Dual-stack on Kubernetes requires version 1.20

Data Transfers - FTS transfer monitoring Feb-Mar 2021

Approximately 52% of data transferred via FTS in Feb-Mar 2020 went over IPv6

But this includes FTS over DAVS where IPv6 vs IPv4 monitoring is not available - all DAVS traffic wrongly assumed to be IPv4

https://monit-grafana.cern.ch/

Fraction of SRM/GridFTP FTS traffic over IPv6

- Some FTS protocols, e.g. DAVS, not yet instrumented to monitor IPv6
- these are excluded from this plot

CMS Experiment Only - FTS IPv6 traffic

IPv6 Monitoring is important perfSONAR network monitoring now monitors IPv6 and IPv4 CERN Experiment Test Framework

Experiment Test Framework (ETF) & IPv6

- ATLAS, CMS testing from IPv6-only nodes in pre-production
 - Both storage and compute if IPv6 endpoint is available
 - Same tests/metrics used as in production (which is still IPv4-only)
 - Will add a test to track IPv6 availability on WNs
 - LHCb also interested
 - ALICE provides its own IPv6 monitoring
- Plan to move IPv6 testing into production and introduce IPv6 reporting capability in the WLCG availability/reliability reports

Phase 3 Move to IPv6-only networking on WLCG

IPv6-only networking on WLCG

- Our main use case was and still is: be ready for use of IPv6-only CPU
- But there is a new reason for WLCG data transfers all to be over IPv6
- Research Networking Technical Working Group (RNTWG)
 - The ability to understand WAN network flows is too limited
 - Need new methods to mark and monitor network use as move to High-Luminosity LHC
 - Jointly with other research communities that also expect high bandwidth needs (SKA for one)
 - Packet Marking sub-group started work
 - Requires use of IPv6: the "marking" is stored in the IPv6 Flow Label (in IPv6 header)
 - See talk on RNTWG at HEPiX (link)

IPv6-only networking (2)

Other motivations:

- Running a dual-stack IPv4/IPv6 infrastructure is complex
- Large companies (e.g. Facebook, EE/BT) use IPv6-only internally
 - Then use tools like NAT64/DNS64/464XLAT to connect to legacy world
- US Federal Government requires 80% of its services to be IPv6-only by 2025
- Our proposed plan is to simplify and move to IPv6-only in the majority of WLCG services and clients
 - With ongoing support for IPv4-only clients where needed
 - E.g. via use of RFC 7755 Stateless IP/ICMP Translation for IPv6-only Data Centres
 - and RFC 7756 extension

Preparing for an IPv6-only WLCG

- Important to test IPv6-only clusters/worker nodes
 - IPv6-only testing at CERN has started
 - \circ $\,$ CMS have performed tests on that cluster $\,$
 - Configured not to use IPv4 (Puppet issues)
 - Next step remove IPv4 completely
- Network traffic analysis (F Prelz)
- FTS changes required to monitor all protocols

CERN IPv6-only testbed - Ben Jones

Goals of Pilot

- Can we find current issues with IPv6?
 - We can wait till everything is fixed, or we can just see what's broken
- Gain experience running IPv6 in production
 - Even CERN has some IPv4 pressure
 - Can next DC be IPv6 only
- End-to-end IPv6: submission to execution
 - IPv6 only workers primary goal, but investigating CEs too
- Not necessary to wait for perfect IPv6 infra to make progress

Limitations / Hacks

- Available networks mean both the workers and CEs are dual stack
 - iptables rules to block & log IPv4
 - ensure we are configured to prefer IPv6
- Various system services require IPv4
 - where we can't configure to use IPv6 we are allowing specific IPv4 traffic
 - one goal is to discover these limitations, but the point is to be able to run jobs

HEPIX

CERN IPv6-only testbed (2)

Integration with services

Service	Protocol	Issue
Argus	IPv4 Only	Needs configuration
MONIT	IPv4 Only	MONIT alarm infrastructure currently IPv4 (working on dual stack)
OpenStack metadata	IPv4 Only	Support added for IPv6 in Nova (Victoria). Tools like facter will need to be updated
SSSD	IPv4/IPv6	Needs the configuraiton flag lookup_family_order=ipv6_first to pickup IPv6
Chrony	IPv4/IPv6	Works, but not all time servers configured dual stack
BDII	IPv4	BDII queries HTCondor-CE port 9619 via IPv4
fetch-crl	IPv4/IPv6	Needs "inet6glue" config param and dependency
CVMFS	IPv4/IPv6	Needs CVMFS_IPFAMILY_PREFER=6

HTCondor Configuration

- We DENY IPV4 traffic to 9619 (CE) and 9618
- PREFER_IPV4=False
 - Needed on CE & on workers
- ENABLE_IPV4=False on CE
 - Even with no IPV4 in DNS, the CE MyAddress will have IPV4 address without this setting
 - _condor_PREFER_IPV4=False env var for clients can workaround, otherwise global settings on schedds etc

26 Mar 2021

HEPiX IPv6

CERN

HEPiX IPv6

Network traffic analysis - places where protocol translation would fail

- In an IPV6-only WLCG, IPv4-only clients will need to use some form of protocol translation to connect to IPv6-only services
- Protocol translation is <u>unable</u> to translate IP literal addresses that are handled in the upper stack layers or stored in some database
 - Applications that store, handle or signal literal IPv4 addresses will be broken by protocol translation
- We are running an analysis with INFN and KIT sampled WN traffic to identify protocols and services used beyond those we already know
 - Another approach is to use IPv6-only WNs and see what breaks and why
- Then work with experiments and developers to "fix" whatever is broken

HEP

Work to achieve IPv6-only networking on WLCG

- Fix dual-stack endpoints that prefer to use IPv4 rather than IPv6
- More testing of IPv6-only clusters
- Encourage more sites to use dual-stack CPU nodes
 - Many sites have successfully moved to dual-stack worker nodes
- WLCG may need to agree a date for "end of full support" of IPv4-only clients
 - e.g. start of LHC Run4?
 - Transition tools such as RFC 7755/6 is one option for connecting IPv4 clients once core is IPv6-only

HEPiX

Problems experienced and lessons learned

- Over many years many blocking issues outside of our own control
 - Both software and site networking teams
- Developers falsely claim that software is fully IPv6-compliant
- Software/protocols fixed-size storage for IP addresses (IPv4 32 bits)
- Software/protocols assume a single address for network interface (as in IPv4)
- Performance differences between IPv4 & IPv6
- Have to understand cases where fraction of IPv6 is smaller than expected
 - Preference for IPv6 over IPv4 must be established
- Can be lots of development effort and testing is not easy
- Sys admins, operations staff, security team, developers
 - All need TRAINING and experience

message to new research communities - build on IPv6 from start!

Summary

- WLCG is ready to support use of IPv6-only CPU resources
 - Tier-1: 96% of storage is available via IPv6
 - Tier-2: 77% sites & storage are now dual-stack
- ~70% of FTS transfers today over IPv6
 - monitoring is not complete for all protocols
- ~50% LHCOPN+LHCONE traffic observed at CERN is IPv6
 - growth currently "on hold"
- IPv6 WG is now working on the move to IPv6-only services
 - Much simpler to manage
 - IPv6 data transfers required to enable netflow packet marking
- Many thanks to all who contribute to this work

Questions?

Backup slides

LHCOPN IPv6 Traffic

CMS tests on CERN IPv6-only nodes

- Initial hiccups due to network configuration of the involved nodes and a few iterations on the HTCondor configuration
- A HammerCloud test was set up to continuously run analysis-like jobs

 Success rate is consistently 100%
- The "final" test will be to remove IPv4 altogether from the WNs (not just block it)

