
Using Natural Language Processing to Extract Information from
Unstructured code-change version control data: lessons learned

E. Ronchieri 1 M. Canaparo 1 Y. Yang 2

D. Salomoni 1 D. C. Duma 1 A. Costantini 1

1INFN CNAF, Bologna Italy

2Department of Statistical Sciences, University of Bologna, Italy

International Symposium on Grids & Clouds
March 21-26, 2021

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 1 / 32

Outline

1 Background

2 Methodolody

3 Results

4 Conclusions

5 References

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 2 / 32

Table of Contents

1 Background

2 Methodolody

3 Results

4 Conclusions

5 References

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 3 / 32

Natural Language Processing (NLP)

NLP is an area of artificial intelligence that uses computer science to elaborate on human
languages [1, 2].

source https://www.ontotext.com/blog/top-5-semantic-technology-trends-2017/

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 4 / 32

https://www.ontotext.com/blog/top-5-semantic-technology-trends-2017/

NLP and Code Changes

Many NLP techniques have been employed to extract key information from free-form
text or to generate models from the analysis of text. They have been also applied to
categorize code changes according to their commit messages.
Why applying NLP to Software Engineering tasks?

the detection of developers’ emotions;
the detection of the opinions of a software product;
the improvement of test case selection;
the detection of error-prone software components.

Some NLP-based approaches have focused on code changes and their consequences
in terms of, for instance, code review and mapping of bug reports to relevant files. [3]

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 5 / 32

Code Changes

Code changes:
are typically introduced for new features, bug fixing, code refactoring,
they can occur during both the development and maintainance phase.

They may be the cause of the introduction of new defects.
Version control and source code management services (such as GitHub) store all the
history of code changes thus:

can be used to identify change-prone software modules;
provide some insights about how software has been developed and maintained, lead-
ing to

I limitation in software defect-proneness;
I improvement in software maintainability.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 6 / 32

Code Change Prediction Model

Predicting the areas of code having a higher likelyhood to change is essential to
help developers for maintenance operations.
Machile Learning (ML) techniques have been largely exploited in this scenario.
ML-based models relate a set of indipendent variables extracted from code repos-
itories to a dependent variable (change-proneness of a module).
Previous ML approaches in literature showed their general effectiveness, however,
they might produce different results according to the different ML techniques. [4]
In our work, we have employed ML techniques both for clustering and classification
tasks.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 7 / 32

Why this study?

Software changes (e.g. in GitHub) are annoted by commit messages.
Developers use commit messages to keep track of the changes performed during
the development process.
An accurate classification of these messages can contribute to help monitor the
evolution of a software project.
However, analysis of commit messages is challenging because of:

I their inconsistency with the project updates [5],
F more than one updates in the same commit message;

I the use of informal language.

Furthermore, previous approaches in literature assumed that a commit message
could be associated with one label at a time; on the contrary, developers often per-
form more tasks in a single commit. [6]

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 8 / 32

Why this study?

In this study we aim at:
I building a historical code change dataset composed of commit messages classified

according to their types of changes and corrections;
I enabling systematic queries to the structured data to show the evolution of a software

project,
I following a multi-label classification approach, where a commit message can be asso-

ciated with more than one class label.

Our final goal is to provide developers - in the HEP context - with a tool for the
automatic classification of commit messages.
This tool would be helpful to monitor the development and maintenance activities at
any point in time and to improve software development practice.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 9 / 32

Table of Contents

1 Background

2 Methodolody

3 Results

4 Conclusions

5 References

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 10 / 32

Experimental tools

Tools to collect commit messages and extract code changes:

Tools to elaborate and relate heterogeneous data

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 11 / 32

Examined Projects
ALISW: 102 projects LHCB: 22 projects CMS-SW:41 projects ROOT: 1 project GEANT4: 1 project

AliDPG starterkit-lessons cms-prs root geant4
AliRoot starterkit-ci cmssw
alidist glossary cms-sw.github.io

AliPhysics analysis-essentials cmssw-config
AliGenerators starterkit cmssw-cfipython

ali-bot developkit-lessons cms-bot
docks ostap-tutorials cms-docker
dim DevelopKit genproductions

delphes gitbook-plugin-panels SCRAM
alibuild starterkit-receipts root
pythia6 bender-tutorials cmssdt-web

homebrew-system-deps Condorcet cmssdt-wiki
create-pull-request second-analysis-steps cmssw-wm-tools

arrow first-analysis-steps cmssdt-ib
RooUnfold opendata-project pkgtools

alisw.github.io plugin-codesnippet cmspkg

https://github.com/alisw
https://github.com/cms-sw

Number of projects: 167 https://github.com/lhcb
https://github.com/root-project/root
https://github.com/Geant4/geant4

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 12 / 32

https://github.com/alisw
https://github.com/cms-sw
https://github.com/lhcb
https://github.com/root-project/root
https://github.com/Geant4/geant4

Methodology

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 13 / 32

Dataset Construction

Collected up in Nov 2020.
Log Statistics:

Total number of days Total number of authors
Total number of commits Total number of modified files
Number of modified files per commit Number of authors per commit
Start date Period of time [start date, end date]

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 14 / 32

Dataset Construction
Code changes key terms from log messages

Terms in bold cited in [7]
Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 15 / 32

Pre-processing - NLP

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 16 / 32

Pre-processing
After the Lemmatization process

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 17 / 32

Feature Extraction

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 18 / 32

Feature Extraction

TF-IDF [7, 8] is an information retrieval technique used to evaluate how relevant a word (i.e. term) is to a document
(commit message) in a collection of documents (log messages).
TF-IDF = tf (t , d)× idf (t) uses two metrics:

TF tf (t , d) is the term frequency (i.e. the number of times the term t appears in a document d);
I t is the word in the document d ;

IDF idf (t) = log(N
1+|d∈D:t∈d|) is the inverse document frequency of the term t across a set of documents D.

1 is considered when the term t is not in the corpus.
I |{d ∈ D : t ∈ d}| is the number of documents where the term t appears and tf (t, d) 6= 0;
I D is the set of documents d ;
I N is the number of documents in the corpus |D|.

The higher the TF-IDF score, the more relevant that term is in that particular document.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 19 / 32

Clustering and Classification

Used the k-means clustering method on feature matrix to identify clusters of commit messages.

Applied the Elbow method and Silhouette score to determine the number of clusters k.

The Elbow method is more of a decision rule, while the Silhouette is a metric used for validation while clustering.
Thus, it can be used in combination with the Elbow method for a more confident decision.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 20 / 32

ML techniques application

Assessment of whole code change database, composed of one dataset per project,
through the application of ML techniques.
Reserved 30% of the dataset for validation and the remaining for training of the model.
Comparison of the different ML techniques according to some performance metrics
(e.g. F-measure).

I F-measure=2 × (precision×recall)
(precision+recall)

I It determines the entries (e.g. modules or files associated to commit messages) that
were predicted as belonging to a particular cluster (a combination of types of changes
and corrections).

ML algorithms used NaiveBayes, NaiveBayesMultinomial, RandomForest, LogisticRe-
gression, AdaBoost, DecisionTree, Bagging.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 21 / 32

Table of Contents

1 Background

2 Methodolody

3 Results

4 Conclusions

5 References

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 22 / 32

Answering Research Questions

RQ1: What has been the impact on NLP techniques for the construction of our dictio-
nary and the feature definition?

I NLP techniques proved to have an important impact on our work.
I The number of features decreased.
I In our previous study [9] without NLP, the maximum value of F-measure was 0.8210.

Project Name #features without NLP #features with NLP Decreased percentage
1 1660 351 78,86%
2 974 411 57,80%
3 2487 483 80.58%
4 500 160 68.00%
5 1382 321 76.77%
6 405 177 56.30%

More results will be included in the proceedings.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 23 / 32

Answering Research Questions

RQ2: Is the constructed database suitable for code-change prediction? Based on the
F-measure our analysis shows:

I the database is a suitable input for code-change predition models that rely on ML tech-
niques;

I F-measure values reach values up to 0.9389 that is a promising result.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 24 / 32

Answering Research Questions

RQ3: Which ML algorithms or algorithm family perform the best in code-change pre-
diction?

I Decision Tree, Bagging, Logistic Regression and Random Forest have the highest F-
measure values in the majority of the examined projects.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 25 / 32

Threats to Validity

The major threats to validity related to our research are:
projects’ bias: we have considered only HEP projects stored in GitHub;
programming language bias: the majority of software projects are written in C++,
this may have affected commit messages.
data labelling: in general, there is no agreement on how commit messages should
be labeled.

However, to overcome these limitations we have relied on peer-reviewing and a partial
automation of the process.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 26 / 32

Table of Contents

1 Background

2 Methodolody

3 Results

4 Conclusions

5 References

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 27 / 32

Conclusions

We have experienced that software development activities are widely detailed in
software repositories.
We have built a historical code change dataset of categorized commit messages
by following a multi-label classification approach.
We have provided a dictionary for labeling commit messages based on labels both
derived from existing literature and found in the analysed commit messages.
We believe our work may help monitoring and improving the development and
maintenance processes.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 28 / 32

Future Work

In the future, we plan to:
I analyze misclassified commits;
I include other commit messages that might not be available in the current dataset;
I incorporate, if possible, the developers’ community feedback to define more suitable

code change category;
I finalize our tool for the automatic classification of commit messages.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 29 / 32

Thanks for your attention
Any questions?

Email addresses
I Elisabetta Ronchieri, elisabetta.ronchieri@cnaf.infn.it
I Marco Canaparo, marco.canaparo@cnaf.infn.it
I Yue Yang, yue.yang3@studio.unibo.it
I Davide Salomoni, davide.salomoni@cnaf.infn.it
I Alessandro Costantini, alessandro.costantini@cnaf.infn.it
I Doina Cristina Duma, cristina.aiftimiei@cnaf.infn.it

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 30 / 32

Table of Contents

1 Background

2 Methodolody

3 Results

4 Conclusions

5 References

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 31 / 32

References

[1] S. Falkenstine, A. Thornton and B. Meiners, Natural Language Processing for Autonomous Identification of Impactful Changes to Specification Documents, in
2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pp. 1–9, 2020, DOI.

[2] S. Wang, F. Ren and H. Lu, A review of the application of natural language processing in clinical medicine, in 2018 13th IEEE Conference on Industrial
Electronics and Applications (ICIEA), pp. 2725–2730, 2018, DOI.

[3] F. Gilson and D. Weyns, When Natural Language Processing Jumps into Collaborative Software Engineering, in 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C), pp. 238–241, 2019, DOI.

[4] G. Catolino and F. Ferrucci, Ensemble techniques for software change prediction: A preliminary investigation, in 2018 IEEE Workshop on Machine Learning
Techniques for Software Quality Evaluation (MaLTeSQuE), pp. 25–30, 2018, DOI.

[5] A. S. M. Venigalla and S. Chimalakonda, Understanding Emotions of Developer Community Towards Software Documentation, 2021.

[6] M. U. Sarwar, S. Zafar, M. W. Mkaouer, G. S. Walia and M. Z. Malik, Multi-label Classification of Commit Messages using Transfer Learning, in 2020 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 37–42, 2020, DOI.

[7] Z. Jiang, B. Gao, Y. He, Y. Han, P. Doyle and Q. Zhu, Text Classification Using Novel Term Weighting Scheme-Based Improved TF-IDF for Internet Media
Reports, Mathematical Problems in Engineering 2021 (2021) .

[8] L. H. Patil and M. Atique, A novel approach for feature selection method TF-IDF in document clustering, in 2013 3rd IEEE International Advance Computing
Conference (IACC), pp. 858–862, 2013, DOI.

[9] E. Ronchieri, Y. Yang, M. Canaparo, A. Costantini, D. C. Duma and D. Salomoni, A new code change prediction dataset: a case study based on HEP software,
in Under Publication at IEEE NSS MIC 2020, 2020.

Using Natural Language Processing to Extract Information from Unstructured code-change version control data: lessons learned 32 / 32

https://doi.org/10.1109/DASC50938.2020.9256611
https://doi.org/10.1109/ICIEA.2018.8398172
https://doi.org/10.1109/ICSA-C.2019.00049
https://doi.org/10.1109/MALTESQUE.2018.8368455
https://doi.org/10.1109/ISSREW51248.2020.00034
https://doi.org/https://doi.org/10.1155/2021/6619088
https://doi.org/10.1109/IAdCC.2013.6514339

	Outline
	Background
	Methodolody
	Results
	Conclusions
	References

