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• Muons detection has a fundamental role in CMS: such particles are produced, in fact, by an 
high amount of physical processes fundamental for the High Energy Physics (e.g. Higgs 
Boson);


• The CMS trigger system selects events with muons, by operating cuts in transverse 
momentum ( ), to maintain the rate of acquisition under control;pT

ISGC 2021

Introduction

• Looking forward at the next phase of operation of the LHC, HL-LHC, new software/hardware 
approaches are needed to face an increase in the particle detection rate;


• Machine/Deep Learning allows to exploit all the information available at trigger level, in 
contrast with the limited ones used by the current algorithms.
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The CMS experiment is one of the four major particle detector operating at the LHC (Large 
Hadron Collider) particle accelerator, at the CERN laboratories in Geneva.

LHC accelerator complex CMS transversal section 

Length: ~21.6m

Diameter: ~15m


Weight: ~13000 tons 

ISGC 2021

The CMS experiment
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It is composed by a cylindrical barrel and two endcaps. 

From inside out, different layers are placed sequentially to detect different types of particle.  
A superconducting solenoid, generates a magnetic field of ~3.8T, needed to bend the 
trajectories of charged particles.
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The CMS experiment
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Most particles are absorbed by CMS, a few (mainly muons, neutrinos…) escape.

In particular, muons are charged particles (~200 times heavier than electrons) that leave 
a significant path inside the detector, especially in the inner track and muon chambers.
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The CMS experiment
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The CMS muon chambers

Longitudinal section of the CMS detector, showing the muon chambers. 

New detectors from Phase-II contained in the red dashed box.
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Different typologies of gaseous detectors are placed in different regions of the 
detector: in the barrel region Drift Tubes chambers (DT), in the endcap region Cathode 
Strip Chambers (CSC). In every region these chambers are interlaced with Resistive 
Plate Chambers (RPC). From Phase-II added Gas Electron Multiplier (GEM).
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The CMS muon chambers
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Level-1 muon trigger divided into three system: Barrel Muon Track Finder (BMTF), 
Overlap Muon Track Finder (OMTF), Endcap Muon Track Finder (EMTF).
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The CMS muon trigger

Focused for 
this work
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Level-1 Trigger in the barrel region

In the barrel region, information coming from the DTs and RPCs are combined to form segments 
of track (called trigger primitives). They include also some information, like: coordinates, bending 
angles, quality bits.


Starting from them, the Barrel Muon Track Finder builds the tracks and assigns the , through 
precompiled tables (LUTs).

pT
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Artificial Neural Networks

An Artificial Neural Network (ANN) is a network vaguely inspired by 
the neurons in the human brain, specifically designed to tackle non-
linear learning problems.


‣ Fully connected Multilayer perceptron (MLP) is used for this work. 
MLPs are made up of single units called perceptrons;


‣ All the input values (features) are multiplied by their weights and 
added together to create a weighted sum, which is then given to 
the activation function  to form the perceptron’s output.


‣ Perceptrons can be stacked together to create an arbitrary 
number of middle layers (hidden), making the network deeper.

f(∑
i

wixi) Perceptron representation
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FPGAs

FPGAs (Field Programmable Gate Arrays) are 
integrated circuits designed to be fully configurable 
by customers after manufacturing. 

They are made up of replicated units of digital 
electronic circuits, logic blocks, embedded in a 
routing structure:


‣ Lookup Tables (LUT) for combinational logic;

‣ Flip-flops for sequential logic;

‣ Digital Signal Processor (DSP) to multiply fixed-

point numbers efficiently.

FPGA basic structure
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Dataset and features
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The dataset used for training:

•  300k MonteCarlo simulated muons (equally distributed in charge) in [3-200 GeV/c]  

range.


A set of information is associated to the trigger primitives, used to train the NN algorithms and 
predict the muon  (in total = 27 features):


‣ Primitives’ position (wheel, sector) for each station crossed by the particle;

‣ Bending angles of the primitives in global coordinates ( );

‣ Trigger primitives’ quality;

‣  variation from one station to another.


The Machine Learning model used is an Artificial Neural Network, built with the Keras framework 
(using Google Tensorflow v2 as a back-end).

pT

pT

ϕB

ϕ

Deep Learning fast inference on FPGA for CMS Muon Level-1 Trigger studiesISGC 2021



13

Neural Network model

A fully connected MLP was built (later called D 
model), with the following architecture:


‣ Input layer of 27 nodes (features);

‣ 5 hidden layers with 60, 50, 30, 40, 15 node 

each;

‣ An output layer which return the  value.

‣ ReLU activation function for all layers; 

The network will perform a regression task, by 
predicting the transverse momentum  in a 
supervised environment, providing as label the 
generated momentum from the simulation.

pT

pT
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Quantisation of the Neural Network

Operations with floating-point numbers in an FPGA require an enormous amount of resources. 
For this reason, the models need to be quantised: 

‣ Conversion of the arithmetic used in the NN from high-precision floating-point to 
normalised low-precision integers at fixed-point:

ap_fixed<14,4>
width integer

The package used to train a quantised NN is called QKeras, developed from a collaboration 
between Google and HEP researchers. The functionalities are basically the same provided by 
the classic Keras, with the main difference of using fixed point arithmetic.


The quantisation is performed during training itself, and not at the end by lowering the numbers 
bitwidth.
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Neural Network weight pruning

Another important aspect to consider when building a Neural Network model on FPGA, is the 
elimination of unnecessary values from the weight tensor, in order to reduce the number of 
operations with less resource consumption.


This is performed by pruning the weights with the lowest magnitude i.e. closest to zero, until 
reaching a quota defined by user.


‣ TensorFlow Sparsity Pruning API was adopted, setting to zero several weights thus 
resulting in a connection ‘cut’ between different neurons of the Neural Network.


This operation allows the network to be more light and, therefore, more resource-friendly.
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Results plots

‣  resolution histogram: 





where:

: transverse momentum estimate, given from 

the model predictions or the Level-1 trigger;

: s imulated value of the transverse 

momentum.

pT

ΔpT

pT
=

pML,L1
Test

− pTsim

pTsim

pTest

pTgen

To compare the predictions obtained with the  values assigned by the Level-1, two kinds of 
plot has been produced:

pT

‣ efficiency curves (turn-on): 





Only muons from which a track is reconstructed 
from BMTF are considered. 
The results are shown as a function of generated 

.

ϵ =
Number of μ > given threshold in pT

Total number of muons

pT
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Preliminary check:  resolution on CPUpT
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ΔpT

pT
=

pNN,L1
Test

− pTsim

pTsim

The Neural Network (D model) resolution has a narrower distribution with respect to the L1T. 
Also, the NN momentum assignment is less prone to large  underestimation.pT

Muons generated in the [3,200] GeV range.

Peak at -1 when:

 , pL1

Test
= 0 ∀pTsim
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Preliminary check: turn-on efficiency on CPU
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ϵ =
Number of μ > given threshold in pT

Total number of muons

‣ Plateau region: very high 
efficiency of the NN model, 
higher w.r.t. Level-1 trigger.

Efficiency turn-on given a  threshold of 22 GeV 
(lowest  - cut single muon triggers over Run-2).

pT
pT

‣ Low  region (10-20 GeV): the 
NN model has a small increase 
of efficiency, compared to 
Level-1, resulting in greater 
number of low-  muons 
wrongly identified as high- .

pT

pT
pT
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Test board characteristics

The target hardware consisted in a 
Xil inx ZCU102 Evaluation Board 
featuring a Zynq Ultrascale+ MPSoC 
(Multiprocessor System on a Chip).

‣ The Programmable Logic (PL) 
houses around 600k logic cells 
(flip-flops and LUTs) and 2520 
DSP slices working with an 
internal memory of ~32Mb;

‣ The Processing System (PS), 
consists in a quad-core Arm 
Cortex-A53, a dual-core Cortex-
R5F real-time processor, and a 
Mali-400 GPU, allowing fast 
development e.g. I/O interface 
manageable via software (SDK).
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From QKeras to HLS: hls4ml

‣ hls4ml is a package developed by member of the HEP community (link to repo) to translate 
Machine Learning algorithms into HLS (High-Level Synthesis) code;


‣ The translation of Python objects into HLS is done by hls4ml as part of an automatic workflow 
saving the time needed to convert the entire neural network into hardware readable code. 

‣ Ability for the user to control the level of parallelisation, by changing a simple parameter (reuse 
factor).


‣ This tool is also fully compatible with QKeras, for quantisation aware training.

Deep Learning fast inference on FPGA for CMS Muon Level-1 Trigger studiesISGC 2021
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Model implementation on FPGA

The Neural Network is then translated into an HLS project and synthesised using Vivado HLS.


The I/O interface used is the AXI4-Lite (Advanced eXtensible Interface), allowing a simpler 
interface than the full AXI4 interface but making the I/O operation slower due to the handshaking 
protocol reading/writing Axi registers.

Simulation of write cycle of the 27 features in input for a single muon entry through AXI4-Lite 
interface between the PS and the PL, taking about 500ns.
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Implementing a block design

In order to implement the chosen NN model in a complete design, the project is exported via the 
Vivado IP (Intellectual Property) Packager. The IP is then added to the Vivado IP Catalog.  
 
Vivado IDE (Integrated Design Environment) provides an user interface with graphic connectivity 
to select IPs, configure the hardware settings and stick together the IP blocks to create the 
digital system.

Block design showing the IP core containing the NN (on the right), connected to the PS (on the left), through the I/O interface.
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Post synthesis report

After synthesising the project, performance and utilisation estimates can be analysed in the 
post-synthesis report:

The model chosen for this analysis, therefore, have been proven to be suitable for 
implementation in the target hardware available (Xilinx ZCU102 Evaluation Board). 
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After the synthesis of the model, the bitstream could be generated and copied onto the FPGA in 
order to program it.

An independent test set, kept for inference, was then converted in the same format as the NN 
input: ap_fixed<16,6>.

 
The computation on the FPGA have been performed using Vivado SDK, calling functions in C++, 
compiled on the host PC that drive the execution into the PL.


Output: 17 bits fixed-point numbers with 2 bits for sign and integer representation.


The structure is then enclosed in a loop, running on the entire test dataset. The output is then 
retrieved and re-converted - via python script - back to floating point for the results investigation.

24

Inference on the FPGA
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Results:  resolution on FPGApT

ΔpT

pT
=

pNN,L1,FPGA
Test

− pTgen

pTgen

‣ Resolution on FPGA is slightly 
broader than on the CPU with 
a small bias towards higher 
values of resolution.


‣ This small decrease in 
performance (compared to 
CPU inference), is likely 
caused to the effect of the 
loss in precision undergone 
by the input features, from 
floating-point to fixed-point.

Muons generated in the [3,200] GeV range.
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Results: Turn-on efficiency on FPGA

ϵ =
Number of μ > given threshold in pT

Total number of muons

‣ Plateau region: very high 
efficiency of the NN model w.r.t. 
Level-1 trigger also in the FPGA 
inference (close to 100%).

Efficiency turn-on given a  threshold of 22 GeV 
(lowest  - cut single muon triggers over Run-2).

pT
pT

‣ Low  region (10-20 GeV): 
similarly to the CPU inference, 
the small  range has an 
higher efficiency, higher w.r.t. 
Level-1 trigger. 
 
This wrong behaviour, that 
implies an higher selection rate, 
must be tackled in the next 
development stages.

pT

pT
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Latencies

• The main advantage of switching to FPGA, is the reduction of the time needed for a single 
prediction. 

• This information was evaluated by counting the number of clock pulses between the input of a 
pattern and the production of the related output. 

• The model took about 74 clock cycles (corresponding to   with a 200MHz clock 
frequency) for each candidate on the FPGA. Just as a reference, CPU computation takes 
around ~ 40 ms for a single prediction.  

• The FPGA is, however, comparable with the time needed by the KBMTF (Kalman Barrel Muon 
Track Finder) at Level-1 to reconstruct a track, with great margins of improvement.

≈ 0.368 μs
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Next steps

‣ Improving the quantisation might improve FPGA 
performances: 


- e.g. different bitwidth, or new activation functions as 
well as energy consumption optimisation.


‣ Implement a new evolved I/O interface to send and 
retrieve data from the NN, reducing time for computation. 

‣ Try with more performing FPGAs: newly installed Vadatech 
ATC36 board hosting a Xilinx Virtex-7 FPGA, mounted on 
an ATCA crate inside the INFN-CNAF Tier-1 Data Center in 
Bologna. 

‣ As mentioned, the higher efficiency at low-  causes an higher rate of muons that are wrongly 
identified as high- .  
This issues needs to solved at software level, by building a more fine-tuned NN in the future.


- e.g. consider not only the  but also , since the momentum is inversely proportional 
to the curvature angle of the muon’s trajectory.  More weight to low-  muons during 
training.

pT
pT

pT q/pT
→ pT
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Conclusions

‣ This work represents a first stepping stone towards the implementation of a Neural Network 
in a FPGA hardware, for the muon  assignment at Level-1 in the Barrel region of the CMS 
muon chambers;


‣ Using a quantised version of Keras called QKeras, a quantised Neural Network was created 
using fixed-point arithmetics.  
Preliminary results on CPU: better  assignment at high momentum regions with an 
increased selection efficiency at low- ;


‣ hls4ml  convert the network in a HLS project, then synthesised in the FPGA;


‣ The inference of the model on the FPGA shows an agreement in terms of  resolution and 
trigger efficiency w.r.t. CPU, with some approximations due to the different arithmetic used;


‣ The inference time is comparable to the actual Level-1 KBMTF trigger.

pT

pT
pT

→

pT
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Backup
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NN training
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‣ 130 epochs with a batch size of 300 events
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Reuse factor
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hls4ml has a parameter called reuse factor that controls the parallelisation or serialisation of the 
model implementation. 

• When this factor is 1, the model is fully parallel exploiting more resources with minor latencies;

• When this factor is >1, the model is more serial with the reuse of the same resource 

(increasing latency).


For our study, maximum reuse was selected. However, by setting no reuse the following 
resource table is obtained:
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FPGA software simulation of the model 

 resolution FPGA simul.pT



 resolution on CPUpT
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Comparison between Pruned NN and non-Pruned NN
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 resolution on FPGApT

Muons generated in the [3,20] GeV range.
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ΔpT

pT
=

pNN,L1,FPGA
Test

− pTsim

pTsim
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 resolution on FPGApT

Muons generated in the [20,40] GeV range.
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ΔpT

pT
=

pNN,L1,FPGA
Test

− pTsim

pTsim
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Turn-on efficiency on FPGA

ϵ =
Number of μ > given threshold in pT

Total number of muons

Efficiency turn-on given a  threshold of 27 GeV pT
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Turn-on efficiency on FPGA

ϵ =
Number of μ > given threshold in pT

Total number of muons

Efficiency turn-on given a  threshold of 32 GeV pT
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