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Overview of Current GSI Use Cases in HPCI
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GSl-enabled Apps. used in HPCI

* Certificate Issuing System
* a web service as a Shibboleth service.
* certificate repository with MyProxy.

e GSl-enabled OpenSSH

* access to frontends of supercomputers.

e GSl-enabled Gfarm

e Gfarm is a distributed file system: http://oss-tsukuba.org/en/software/gfarm

e Gfarm is linked against GSI library and uses proxy certificates for client
authentication.


http://oss-tsukuba.org/en/software/gfarm

What should we replace GSI with ?
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Requirements

* Realize Single Sign-on to supercomputers (SSH) and file storages
(Gfarm)

* No interactive authentication is needed except when user get the first
credential.

* Types of SSO
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Candidate

* OpenID Connect & OAuth

* realize SSO to Web services with cookie

* |ssues
* How can we do SSO to different command-line applications ?
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Development Environment

e SciTokens SSH: OAuth-enabled SSH

* https://scitokens.org/
e OAuth-enabled PAM module

» KeyCloak
* https://www.keycloak.org/
* Access token endpoints

* oidc-agent
 https://indigo-dc.gitbook.io/oidc-agent/
 a set of tools to manage OpenlID Connect tokens and make them easily usable
from the command line



https://scitokens.org/
https://www.keycloak.org/
https://indigo-dc.gitbook.io/oidc-agent/

SciTokens SSH

e Based on OAuth-SSH https://github.com/XSEDE/oauth-ssh/

* A PAM module that can handle SciTokens
 The PAM module does not keep a token on the SSH server.
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* We decided to keep the access token obtained initially on the SSH server.


https://github.com/XSEDE/oauth-ssh/

Prototype for multi-stage SSH connections

 Scenario

* User logins to the first SSH server, and from the first SSH server the user
logins to the second server.
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* Approaches
* all-round access tokens that are accessible to wide services
 token exchange (RFC 8693)

* issue access token to each resource server

e obtain an access token for different resource server from the exist access token with
token exchange method



What we have done

* Improved SciToken SSH PAM module
* to keep the access token used at SSH client authentication,

* to map the subject claim onto the local account and save mapping
information in a file that obeys the same format as OAuth-SSH.

* Developed a token exchange program.
* Confirmed that the all-round access tokens approach works.

* Confirmed that the token exchange approach works.
» KeyCloak supports experimentally the token exchange.
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Future work

* There are many many things we must consider...

* design of access token
* all-round access token approach, but only accessible for HPCI services

* token exchange approach
e we must evaluate these approaches under security consideration.

e revocation of access tokens
* how can we do?

e Some technical issues

* We cannot send access token whose size is equal to or greater than 1024B to
SSH server. (related to CVE-2016-65157?)



Comments are welcome !
Thanks |



