Consideration of Token-based
AuthN/Z for Command-line
Applications

Eisaku SAKANE <sakane@nii.ac.jp>
National Institute of Informatics

Japan

mailto:sakane@nii.ac.jp

Overview of Current GSI Use Cases in HPCI

(Shibboleth IdP e ——
h User DB
Shibboleth Authentication Shibboleth IdP
J
5 Web R
B — Certificate Issuing System (SP)
, Vol > (MyProxy, NAREGI-CA) AuthZ Management System
proxy certificate ~ ' o
@ .
S/S% grid-mapfile
Frontend (GSl-enabled SSHd)
rid-mapfile
Frontend (GSl-enabled SSHd) : i
)

Gfarm client

File Storage
(Gfarm)

=== Shibboleth Cred. flow
=== GSI| Cred. flow

GSl-enabled Apps. used in HPCI

* Certificate Issuing System
* a web service as a Shibboleth service.
* certificate repository with MyProxy.

e GSl-enabled OpenSSH

* access to frontends of supercomputers.

e GSl-enabled Gfarm

e Gfarm is a distributed file system: http://oss-tsukuba.org/en/software/gfarm

e Gfarm is linked against GSI library and uses proxy certificates for client
authentication.

http://oss-tsukuba.org/en/software/gfarm

What should we replace GSI with ?

(Shibboleth IdP e —
) User DB
Shibboleth Authentication Shibboleth IdP
J
Web N
»—J Certificate Issuing System (SP) AuthZ Management Svstem
\ (MyProxy, NAREGI-CA)) & Y

grid-mapfile

(Frontend (GSl-enabled SSHd)

grid-mapfile

Frontend (GSI-enabled SSHd)

=== Shibboleth Cred. flow

——p GS| Cred. flow File Storage

(Gfarm)

Requirements

* Realize Single Sign-on to supercomputers (SSH) and file storages
(Gfarm)

* No interactive authentication is needed except when user get the first
credential.

* Types of SSO

Srvl

Service A Service A
n / m / ervice
” %

bt

: CliB \
me CliA Srv2 mmmmm Cli A Service B

Service A

Candidate

* OpenID Connect & OAuth

* realize SSO to Web services with cookie

* |ssues
* How can we do SSO to different command-line applications ?

ﬁ Service A
:;: / CliB \
mmmmm Cli A Service B

Development Environment

e SciTokens SSH: OAuth-enabled SSH

* https://scitokens.org/
e OAuth-enabled PAM module

» KeyCloak
* https://www.keycloak.org/
* Access token endpoints

* oidc-agent
 https://indigo-dc.gitbook.io/oidc-agent/
 a set of tools to manage OpenlID Connect tokens and make them easily usable
from the command line

https://scitokens.org/
https://www.keycloak.org/
https://indigo-dc.gitbook.io/oidc-agent/

SciTokens SSH

e Based on OAuth-SSH https://github.com/XSEDE/oauth-ssh/

* A PAM module that can handle SciTokens
 The PAM module does not keep a token on the SSH server.

SciToken SSH (PAM)
SciToken

‘: :.
= » SSH server
o

* We decided to keep the access token obtained initially on the SSH server.

https://github.com/XSEDE/oauth-ssh/

Prototype for multi-stage SSH connections

 Scenario

* User logins to the first SSH server, and from the first SSH server the user
logins to the second server.

) SciToken SSH (PAM) SciToken SSH (PAM)
= Token

n” » SSH server » SSH server

. e R

* Approaches
* all-round access tokens that are accessible to wide services
 token exchange (RFC 8693)

* issue access token to each resource server

e obtain an access token for different resource server from the exist access token with
token exchange method

What we have done

* Improved SciToken SSH PAM module
* to keep the access token used at SSH client authentication,

* to map the subject claim onto the local account and save mapping
information in a file that obeys the same format as OAuth-SSH.

* Developed a token exchange program.
* Confirmed that the all-round access tokens approach works.

* Confirmed that the token exchange approach works.
» KeyCloak supports experimentally the token exchange.

User

7. access authorization endpoint by
authorization code flow

6. open authorization
endpoint url in browser

1. run oidc-agent

3. send authentication

9. receive authorization code

8. redirect to oidc-agent

4. send client registration request

5. recieve client registration response

10. access token endpoint with authorization code

request

12. recieve authentication
response

2. run oidc-gen
—

13. store configuration

15. request
access token

14. run oidc-token

S —
17. display access
token

19. ssh with access token

18. run ssh and
input access toke

22. run token_exhange with access token path

11. get id token, access token and refresh token

20. access discovery url
and get public key to
introspect access token

16. get access token

OpenlID Provider
(eg. KeyCloak)

- /

23. access token endpoint to
perform token exchange

/ Resource Server A

enabled sshd

21. store access tagken

'[—

24. display token exchange response

25. run ssh and input access token

/ Resource Server B \

enabled sshd

26.|ssh with
access token

(
A L _

11

Future work

* There are many many things we must consider...

* design of access token
* all-round access token approach, but only accessible for HPCI services

* token exchange approach
e we must evaluate these approaches under security consideration.

e revocation of access tokens
* how can we do?

e Some technical issues

* We cannot send access token whose size is equal to or greater than 1024B to
SSH server. (related to CVE-2016-65157?)

Comments are welcome !
Thanks |

