EGI Workload Management Service

A. Tsaregorodtsev,
Aix Marseille Univ, CNRS/IN2P3, CPPM
ISGC Conference, 24th March 2021
Outline

- EGI WMS infrastructure
- Services
 - Managing jobs
 - Managing computing resources
 - Managing data
 - Managing workflows
- Example usage
- Conclusions
EGI Workload Manager is one of the services in the EOSC Marketplace Catalog

- Managing user jobs running on the EGI computing resources
- Replacement for the gLite WMS service
- Based on the DIRAC Interware distributed computing framework
Interware

- A software framework for distributed computing
- A **complete** solution to one (or more) **user community**
- Builds a layer between users and **resources**
- A **framework** shared by multiple experiments, both inside HEP, astronomy, and life sciences
EGI Workload Manager Service was hosted until now by the CYFRONET project
- 5 medium size VM servers
- 3TB storage
- MySQL database service
- ~8 million user jobs in 2020

Similar service was provided by the France-Grilles NGI
- Similar hardware infrastructure
- 7 million user jobs in 2020

In March 2021 the two services were merged to provide a single one
- Optimized maintenance and operations
- Single administrator team
- The service is hosted in the IN2P3 Computing Center, Lyon
 - 11 virtual hosts, 8TB storage, using MySQL and Elasticsearch services provided by the computing center

The combined service inherited all the communities and users
- >40 registered VO’s
- About 700 registered users
- Accessible via the same endpoint
 - https://dirac.egi.eu
Managing user jobs
Pilot jobs are submitted to computing resources by specialized Pilot Directors.

Pilots retrieve user jobs from the central Task Queue and steer their execution on the worker nodes including final data uploading.

Pilot based WMS advantages:
- increases efficiency of the user job execution
- allows to apply efficiently community policies at the Task Queue level
- allows to integrate heterogeneous computing resources
Users are managing jobs using various tools

Command line (batch system like interface):

```
bash-4.2# dsub /bin/echo "Hello world"
53917277
bash-4.2# dstat
JobID  Owner  JobName  OwnerGroup  JobGroup  Site  Status     MinorStatus     SubmissionTime
53917277  atsareg Unknown wenmr_user NoGroup  EGI.NIKHEF.nl  Running  Application  2020-10-22 19:06:24
```

Python API

- Starting from v7r2
- Python3 client API is supported

```
from DIRAC.Interfaces.API.Job import Job
import Dirac

dirac = Dirac()
j = Job()
j.setCPULimit(500)
j.setExecutable('/bin/echo hello')
j.setExecutable('/bin/hostname')
j.setExecutable('/bin/echo hello again')
j.setName('API')

dirac.submitJob(j)
```
Several methods to install the DIRAC client software on user workstations/laptops (Linux flavors)

- **dirac-install** installer tool
 - Rather tedious (see tutorials)
 - Suitable for various flavors of Linux

- **Docker** container (Linux, MacOS)
 - `docker run -it -v $HOME:$HOME -e HOME=$HOME diracgrid/client:egi`

- **CVMFS** client installation (Linux)
 - `source /cvmfs/dirac.egi.eu/dirac/bashrc_egi`

- **Conda** environment (Linux, MacOS)
 - `conda create -c conda-forge --name dirac ipython dirac-grid`
 - `conda activate dirac`

- Installing as a regular Python package (starting from v7r2)
 - `pip install dirac`
 - `dirac-configure -S dips://dirac-config.egi.eu:9135/Configuration/Server`
Web Interface

Job Launchpad

Job Monitoring
Other WMS interfaces

- **REST API**
 - A language neutral interface for job manipulation

- The HTTPS based DIRAC service interface is released
 - Will be shortly available to the EGI users
 - Will allow for a language neutral RPC interface

- Jupyter Notebook interface
 - In a prototype phase
 - DIRAC API enabled iPython shell
 - Terminal with DIRAC command line interface
 - Managing user credentials is being sorted out
 - Functional for users having grid certificates and registered in the Check-In SSO service
There are multiple examples of SSO solutions

The EGI Check-in service enables access to EGI services and resources using federated authentication mechanisms

A hub between federated Identity Providers (IdPs) and Service Providers (SPs) that are part of EGI
Oauth/OIDC Authentication

Web Portal functional prototype

Command Line functional prototype
Managing user computing resources
DIRAC was initially developed with the focus on accessing conventional Grid computing resources

- WLCG grid resources for the LHCb Collaboration

Grid infrastructures
- E.g. EGI, WLCG, OSG
- CREAM, HTCondorCE, ARC

Cloud infrastructures
- EGI Federated Cloud, France-Grilles cloud
Standalone computing clusters

- Users can connect their own computing resources
 - Not making part of any grid infrastructure

- The user site can be:
 - a single computer or several computers without any batch system
 - a computing cluster with a batch system
 - LSF, BQS, SGE, PBS/Torque, Condor
 - Commodity computer farms
 - SLURM
 - HPC centers
Managing user data
Storage plugins

- Storage element abstraction with a client implementation for each access protocol
 - DIPS – DIRAC data transfer protocol
 - FTP, HTTP, WebDAV
 - SRM, XROOTD, RFIO, DCAP, etc
 - HEP centers specific protocols
 - Using gfal2 library developed at CERN
 - S3, Swift, CDMI: cloud specific data access protocols

- Each SE is seen by users as a logical entity
 - With some specific operational properties
 - Archive, limited access, etc
 - SE’s can be configured with multiple protocols

- New data access technologies require creating new specific plug-ins
File Catalog Service

- File Catalog is a service to keep track of all the physical file replicas in all the SE’s
 - Stores also file properties:
 - Size, creation/modification time stamps, ownership, checksums
 - User ACLs

- DIRAC relies on a *central* File Catalog
 - Defines a single logical name space for all the managed data
 - Organizes files hierarchically like in common file systems

- VO’s can ask for dedicated File Catalog services
 - No interference with other users
 - Customized behavior
 - Example: Eiscat 3D File Catalog
 - 117M files
 - Custom access policies
DM user interfaces

- **COMDIRAC**
 - Representing the logical DIRAC file namespace as a parallel shell
 - `dls`, `dcd`, `dpwd`, `dfind`, `ddu`, etc commands
 - Commands for file upload/download/replication
 - `dput`, `dget`, `drepl`

```
bash-4.2# dput test.jdl /enmr.eu/user/a/atsareg/test/test.jdl
bash-4.2# dls -L /enmr.eu/user/a/atsareg/test/test.jdl
-rwxrwxr-x 1 atsareg wenmr_user 256 2020-10-22 22:33:12 test.jdl
    CYFRONET-USER   dips://dirac-dms.egi.eu:9148/DataManagement/StorageElement/enmr.eu/user/a/atsareg/test/test.jdl
bash-4.2# rm test.jdl
bash-4.2# dget /enmr.eu/user/a/atsareg/test/test.jdl
bash-4.2# ls test.jdl
test.jdl
bash-4.2# drm /enmr.eu/user/a/atsareg/test/test.jdl
1 object(s) removed in total
```
DFC is Replica and Metadata Catalog
- User defined metadata
- The same hierarchy for metadata as for the logical name space
 - Metadata associated with files and directories
 - Allow for efficient searches
- Efficient Storage Usage reports
 - Suitable for user quotas

Example query:
- `find /lhcb/mcdata LastAccess < 01-01-2012 GaussVersion=v1,v2 SE=IN2P3,CERN Name=*.raw`
File Catalog Web interface

Directory Metadata
- account
- antenna
- country
- end
- experiment_name
- start
- type
Managing workflows
Massive operations

- DIRAC can deal with large numbers of jobs
 - > 100K simultaneously running jobs
 - > 10M jobs in the WMS
- DIRAC can deal with large volumes of scientific data
 - 10’s of Petabytes
 - 10^7-10^8 of files and directories
- There is a need for massive (bulk) operations
 - Examples:
 - Submit and monitor 50K jobs
 - Replicate 10^5 files from SE A to SE B
 - Remove 10^5 files and all their replicas in all the storages
- Massive operations supported
 - Asynchronous execution
 - Request Management System, RMS
 - Automatic failure recovery
 - Automated data driven workflows
Data driven workflows as chains of data transformations
- Transformation: input data filter + recipe to create tasks
- Tasks are created as soon as data with required properties is registered into the system
- Tasks:
 - Jobs submission
 - Data replication, removal
 - etc

Transformations can be used for automatic data driven bulk data operations
- Scheduling RMS tasks
- Often as part of a more general workflow
Example of usage
The WeNMR portal architecture

Main use cases:
• Disease-causing mutations
• Engineer better molecules for material, health or food applications
• Obtain a starting point for drug design to combat disease

Job submission to the grid and cloud resources is performed using the EGI Workload Manager

Alexandre M.J.J. Bonvin, Utrecht University
Multiple Centers provided resources to studies related to the COVID-19 research

Administrators of OSG (National Grid Infrastructure in USA) created a special HTCondorCE gateway giving access to several sites
 - The new resource was quickly connected to the EGI Workload Manager Service

Several WLCG centers opened access to their resources for the WeNMR payloads
 - Centre de Physique des Particules de Marseille (CPPM)
 - Karlsruhe Institute of Technology
 - Spanish LHCb Tier2 (USC-LCG2) site

CYFRONET provided a 5TB disk storage of the S3 type for the WeNMR data
 - An S3 storage plugin was quickly developed by the DIRAC team to incorporate it into the common infrastructure

The jobs were tagged as COVID-19 to allow giving these tasks high priority in the EGI Workload Manager Service
Additional grid resources for the WeNMR Project

#jobs last 7 days (Apr. 23-30)

Distribution of COVID-tagged jobs
Conclusions

- Large scientific communities have to employ various geographically distributed computing and storage resources

- DIRAC provides a framework for building distributed computing systems aggregating multiple types of resources

- EGI Workload Manager service provides an integrated solution with a reach set of ready to use services for managing computing resources, application workloads and data

http://diracgrid.org
This work is co-funded by EGI and the EOSC-hub project (Horizon 2020) under Grant number 777536
Useful links

- DIRAC Project site: http://diracgrid.org
