ESCAPE

Next Generation Management of Exabytes of Cross-Discipline Scientific Data

Riccardo Di Maria on behalf of ESCAPE WP2
CERN

March 24th, 2021 - International Symposium on Grids & Clouds 2021 (ISGC 2021)
Science Projects

Data Centres

Project Goals

- Prototype an infrastructure adapted to exabyte-scale needs of large science projects
- Ensure sciences **drive** the development of EOSC
- Address FAIR data management principles
The ESCAPE Project Work Packages

● **Management, Innovation, Networking and Dissemination (MIND):**
 coordination and management

● **Data Infrastructure for Open Science (DIOS):**
 scalable federated data infrastructure (Data Lake)

● **Open-source scientific Software and Service Repository (OSSR):**
 repository of scientific software services of the research infrastructures

● **Virtual Observatory - connecting ESFRI projects to EOSC through VO framework (VO):**
 astronomical high-level products archive and related services

● **ESFRI Science Analysis Platform (ESAP):**
 flexible science platform for the analysis of open access data

● **Citizen Science - engagement and communication (CS):**
 open gateway dedicated to the public and communication actions

March 24th, 2021
Data Infrastructure for Open Science

● Deliver a Data Infrastructure for Open Science
 ○ non HEP-specific implementation of the Data Lake concept
 ○ modular ecosystem of services and tools shaped around the scientific communities

● ESCAPE sciences at different phases of evolution
 ○ building up or consolidating computing model
 ■ needs of science projects drive services requirements
 ○ interest on data organisation, management and access (DOMA)

● Backbone consists of services operated by the partner institutes
 ○ leveraging the existing expertise in WLCG
 ■ e.g. RUCIO, FTS, XRootD-XCache, CRIC, AAI X.509 and Tokens (Indigo IAM), WLCG storage technologies
The Data Lake

• Hiding complexity and providing transparent access to data
• Heterogeneous federated storage and operations model
• Some centers joining even if not funded by ESCAPE

The Data Lake

- Experiments contribute to the total quota at their will/disposal
- 15+ Rucio Storage Elements
 - standard resources from institutes
 - PoC of commercial Clouds integration
 - PoC of HPC integration (through XCache)
- 9 sciences/experiments highly committed
 - 60+ accounts/users as representatives
 - specific needs to be addressed
 - tailored use cases and workflows
The Data Lake
Architecture

● Data Storage Services and Usage
 ○ facilities diverse in size and expertise
 ○ diverse backends such as classic RAID systems, Erasure Coding, CEPH, and multi-replica
 ○ data injection buffering scenarios
 ○ perfect playground for the implementation of storage Quality of Service intelligence

● Data Orchestration
 ○ ESCAPE Rucio exploits a specific subset of asynchronous agents
 ■ redundancy and working-threads designed to fulfil the Data Lake needs
 ○ testing suite for uploading, downloading, replicating, and deleting a range of different sized files at a different rate for all ESCAPE RSEs
 ○ dedicated and shared monitoring infrastructure serving ESCAPE community
Architecture

● File Transfer Service
 ○ FTS as asynchronous transfer scheduling service
 ○ continuous testing for both FTS and GFAL
 ■ data monitoring and efficiency into ESCAPE dashboards

● Networking
 ○ exploiting perfSONAR infrastructure
 ■ network links between sites monitored by point-to-point transfers and latency tests
 ■ data monitoring and efficiency into ESCAPE dashboards

● Information System
 ○ ESCAPE Compute Resources Information Catalog (CRIC) instance containing services information and configuration for Rucio
Architecture

- **Authentication and Authorisation**
 - Current, X.509 based AAI
 - Future, token-based AAI
 - Move beyond X.509

- **Synchronisation Services**
 - set of tools designed and deployed to run every 2 hours
 - Rucio pulls necessary information from other ESCAPE services, e.g. IAM and CRIC

Approach: leverage and build upon the WLCG experience
Architecture

- Data Access, Content Delivery and Caching
 - leveraging know-how in DOMA/WLCG
 - vanilla installation (experiment-unbiased) caching service → evaluating multi-VO implementation
 - main use-cases:
 - latency hiding and file re-usability
 - benchmarking multi-caching layers
 - HTTP and Tokens awareness
 - facilitate ingress/egress with Commercial Clouds and HPC
 - main goal to investigate and understand whether caching can help on non-event based files e.g. images, data-cubes, etc.
Monitoring - GFAL, FTS, Rucio Events and Stats

- Experiment - Number of DIDs - Number of files - Number of datasets - Number of containers - Average Filesize (GB)

- LOFAR
 - DIDs: 25.3K
 - Number of files: 25.2K
 - Number of datasets: 5
 - Number of containers: 0
 - Average Filesize: 1.666 GB

- FAIR
 - DIDs: 154
 - Number of files: 192
 - Number of datasets: 2
 - Number of containers: 0
 - Average Filesize: 1.936 GB

- CMS
 - DIDs: 401
 - Number of files: 398
 - Number of datasets: 3
 - Number of containers: 0
 - Average Filesize: 1.026 GB

- MAGIC
 - DIDs: 13.5K
 - Number of files: 824
 - Number of datasets: 12.5K
 - Number of containers: 18
 - Average Filesize: 573 MB

- ATLAS
 - DIDs: 7.604K
 - Number of files: 6.932K
 - Number of datasets: 652
 - Number of containers: 0
 - Average Filesize: 235 MB

- LSST
 - DIDs: 350K
 - Number of files: 350K
 - Number of datasets: 13
 - Number of containers: 0
 - Average Filesize: 18.3 MB

- CTA
 - DIDs: 564K
 - Number of files: 563K
 - Number of datasets: 1.458K
 - Number of containers: 0
 - Average Filesize: 9.273 MB

- SKA
 - DIDs: 2.736M
 - Number of files: 2.703M
 - Number of datasets: 33.9K
 - Number of containers: 25
 - Average Filesize: 3.259 GB

- VIRGO
 - DIDs: 11.6K
 - Number of files: 2,016.6K
 - Number of datasets: 0
 - Average Filesize: 10.0 GB
Deployment Model and Techniques

- Infrastructure should be resource-aware (**minimal environment**) for an improved project sustainability and for the successful exportability adoption by partners and experiments
 - deploy a manifold system utilising a lightweight but complete implementation
 - sciences at different scale and trying to address multiple future use case, including experiments with different data management requirements than ATLAS and CMS
 - Kubernetes cluster on the CERN OpenStack
 - a master of 4 vCPUs, 8 GiB RAM, and 40 GB local storage
 - 6 nodes each of 8 vCPUs, 16 GiB RAM, and 70 GB local storage
- ESCAPE tailors functional services on experiments/sciences needs
- Beyond ESCAPE term, different sciences will be able to deploy and manage the subset of services they will want to run and/or customise at their convenience
Deployment Model and Techniques

● Fruitful extended collaboration with teams and experts of the various components within and beyond ESCAPE
 ○ e.g. MonIT, CERN Cloud, OracleDB, Kubernetes, as well as Rucio, IAM, FTS, CRIC, etc.
 ○ Rucio/JupyterLab Integration Project within CERN-HSF Google Summer of Code (M. Aditya Hilmy) and used by LOFAR to analyse data during the Data Lake assessment

● Synergy with Rucio team allowed to tailor infrastructure to cope with experiments needs → exploring new Rucio phase space

● Sites, sciences, and experiments strongly involved and committed
Data Lake 24-hour Full Dress Rehearsal Preparation

- Data Lake available 24/7 to ESCAPE users even though not-production → FDR as specific testing-focused time-window
 - goal is to cover experiment data workflow needs on a single day (from 9 sciences)
 - perspective from scientists and from sites
 - assessment of robustness of the various Data Lake components, tools, services, etc.
- Fortnightly assemblies for data injector demonstrators towards FDR
 - even out differences in knowledge among partners
 - acquiring know-how on management and utilisation of technology stack - sites deeply involved
 - hot-topics: data injection and access, QoS, data life-cycles
 - deployment&operation team gathered to identify and solve problematic situations
- Improving and deploying features and functionalities for both Kubernetes and Rucio
DL 24-hour Full Dress Rehearsal Takeaway → Workshop

CTA - Simulate a night-data-captured from telescope in Canary Island for 6h: 500 datasets of 10 files ingest.

ATLAS - Storage QoS functionality tests: upload files from LAPP cluster to ALPAMED-DPM (FR) and INFN-NA-DPM (IT).

Request transfer to 1 RSE QoS=SAFE and 2 RSEs QoS=CHEAP-ANALYSIS.

LOFAR - Astronomical radio source 3C196 image using LOFAR data. The raw visibility data were downloaded via rucio from the EULAKE-1 and processed on OpenNebula at SURFsara using the container based LOFAR software.

LSST - Simulate production conditions: ingest the HSC RC2 dataset from CC-IN2P3 local storage to the Data Lake, at a realistic LSST data rate (20TB/24h); confirm integrity and accessibility of the data via a notebook.

The image is a reconstruction drawn within a Jupyter Notebook accessing the data used in the Full Dress Rehearsal.
MAGIC - Mimics a real MAGIC observation use case. Remote storage (Data Lake aware) next to the telescope acts as a buffer for subsequent data injection to the ESCAPE Data Lake (and local deletion after success).

EGO/VIRGO - Upload 4h of VIRGO public data sampled at 4 kHz from an EGO server to the Data Lake. Download data to CNAF-STORM. Data are split into 1s samples. Making available the real-time strain data to pipelines and tools assessing the data quality.

FAIR - Upload 1 file (1 GB) every 10 minutes for the whole duration of the rehearsal. Request 2 replicas in QOS=SAFE and 1 replica in QOS=CHEAP-ANALYSIS.

File size and QoS tagging approximate data ingestion from CBM (i.e. the FAIR experiment expected to produce the largest volume of raw data).

SKA - Pulsar Observations injection test. For 4 hours at any point during the 24h, injecting new group of files in a dataset every 10 minutes. Files fall into two containers, representing different SKA Projects. 24h test moving data on basis of QoS class.
Conclusion and Next Steps

- **ESCAPE DIOS/WP2** managed to pilot a Data Lake infrastructure
 - fulfilling functional data management needs of flagship ESFRIs from several scientific disciplines
 - sensible technologies choice, conceived in WLCG environment and LHC experiments

- **Full Dress Rehearsal - Assessment of the Data Lake**
 - pivotal role to test model, concepts, and pilot infrastructure
 - chosen technologies offer the right functionality for a broader set of communities
 - Astro-particle Physics, Electromagnetic and Gravitational-Wave Astronomy, Particle Physics, and Nuclear Physics *pursuing together* FAIR and open-access data principles
 - ESCAPE contributing to broaden the scope of some of those technologies according to partners needs (in line/collaboration with providers plans)
Conclusion and Next Steps

● ESCAPE mature for prototype phase → full scale exercise for end of the year
 ○ close-to-production test on data management and data processing
 ■ experiments needs and interests, FAIR data management vs. embargoed (Open Data policy), fully multi-VO, implementation of token-based AAI
 ■ complementing existing efforts in WLCG → ESCAPE as perfect environment to test new models/concepts
 ■ exploring non-HEP-standard scenarios, etc.
 ○ collaboration with other EU-funded projects on-going
 ○ ESCAPE partners to explore first-hand technology stack

● ESCAPE end in 2022 → addressing long term sustainability
 ○ adopting components from established scientific contexts, leveraging services supported by large open source communities, documenting know-how on integration and deployment, ensuring services become part of EOSC-core

March 24th, 2021