

ESCAPE

Next Generation Management of Exabytes of Cross-Discipline Scientific Data

Riccardo Di Maria on behalf of ESCAPE WP2

CERN

March 24th, 2021 - International Symposium on Grids & Clouds 2021 (ISGC 2021)

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

Science Projects

Data Centres

Project Goals

- Prototype an infrastructure adapted to exabyte-scale needs of large science projects
- Ensure sciences **drive** the development of EOSC
- Address FAIR data management principles

2

Riccardo.Di.Maria@cern.ch

Funded by the European Union's Horizon 2020 - Grant N° 824064

ESCAPE The ESCAPE Project Work Packages

- Management, Innovation, Networking and Dissemination (MIND): coordination and management
- Data Infrastructure for Open Science (DIOS):
 scalable federated data infrastructure (Data Lake)
- Open-source scientific Software and Service Repository (OSSR): repository of scientific software services of the research infrastructures
- Virtual Observatory connecting ESFRI projects to EOSC through VO framework (VO): astronomical high-level products archive and related services
- ESFRI Science Analysis Platform (ESAP): flexible science platform for the analysis of open access data
- Citizen Science engagement and communication (CS): open gateway dedicated to the public and communication actions

3

ESCAPE Data Infrastructure for Open Science

- Deliver a Data Infrastructure for Open Science
 - non HEP-specific implementation of the Data Lake concept
 - modular ecosystem of services and tools shaped around the scientific communities
- ESCAPE sciences at different phases of evolution
 - building up or consolidating computing model
 - needs of science projects drive services requirements
 - interest on data organisation, management and access (DOMA)
- Backbone consists of services operated by the partner institutes
 - Ieveraging the existing expertise in WLCG
 - e.g. RUCIO, FTS, XRootD-XCache, CRIC, AAI X.509 and Tokens (Indigo IAM), WLCG storage technologies

ESCAPE The Data Lake

Further info: https://wiki.escape2020.de/index.php/WP2__DIOS#Datalake_Status

Riccardo.Di.Maria@cern.ch

ESCAPE The Data Lake

- Experiments contribute to the total quota at their will/disposal
- 15+ Rucio Storage Elements
 - standard resources from institutes
 - PoC of commercial Clouds integration
 - PoC of HPC integration (through XCache)
- 9 sciences/experiments highly committed
 - 60+ accounts/users as representatives
 - specific needs to be addressed
 - tailored use cases and workflows

Riccardo.Di.Maria@cern.ch

Funded by the European Union's Horizon 2020 - Grant N° 824064

- Data Storage Services and Usage
 - facilities diverse in size and expertise
 - diverse backends such as classic RAID systems, Erasure Coding, CEPH, and multi-replica
 - data injection buffering scenarios
 - perfect playground for the implementation of storage Quality of Service intelligence
- Data Orchestration
 - ESCAPE Rucio exploits a specific subset of asynchronous agents
 - redundancy and working-threads designed to fulfil the Data Lake needs
 - testing suite for uploading, downloading, replicating, and deleting a range of different sized files at a different rate for all ESCAPE RSEs
 - dedicated and shared monitoring infrastructure serving ESCAPE community

8

- File Transfer Service
 - FTS as asynchronous transfer scheduling service
 - continuous testing for both FTS and GFAL
 - data monitoring and efficiency into ESCAPE dashboards
- Networking
 - exploiting <u>perfSONAR infrastructure</u>
 - network links between sites monitored by point-to-point transfers and latency tests
 - data monitoring and efficiency into ESCAPE dashboards
- Information System
 - ESCAPE Compute Resources Information Catalog (CRIC) instance containing services information and configuration for Rucio

Approach: leverage and build upon the WLCG experience

- Synchronisation Services
 - set of tools designed and deployed to run every 2 hours
 - Rucio pulls necessary information from other ESCAPE services, e.g IAM and CRIC

Riccardo.Di.Maria@cern.ch

aware service

aware service

ESCAPE Architecture

- Data Access, Content Delivery and Caching
 - leveraging know-how in DOMA/WLCG
 - vanilla installation (experiment-unbiased) caching service
 → evaluating multi-VO implementation
 - o main use-cases:
 - latency hiding and file re-usability
 - benchmarking multi-caching layers
 - HTTP and Tokens awareness
 - facilitate ingress/egress with Commercial Clouds and HPC
 - main goal to investigate and understand whether caching can help on non-event based files e.g. images, data-cubes, etc.

Monitoring - GFAL, FTS, Rucio Events and Stats

472497

submissions

450766

completed transfers

12.6 K

18

~ Stats

824

totalling .979 TB of data

18403

failed transfers

Average Filesize +

1.666 GB

1.036 GB

1.026 GB

573 MB

25.5 K

18.5 K

10.0 K

688

661

17

9

4

Used Storage per Experiment (replica=1)

ATLAS 2020-11-17123:57:45.000Z	
	1.63 тв
CMS 2020-11-17T23:57:45.000Z	
	408.33 GB
CTA 2020-11-17T23:57:45.000Z	
	5.22 тв
FAIR 2020-11-17T23:57:45.000Z	
	198.92 GB
LOFAR 2020-11-17T23:57:45.000Z	
	42.06 тв
LSST 2020-11-17T23:57:45.000Z	
	6.45 тв
MAGIC 2020-11-17T23:57:45.000Z	
	472.46 GB
SKA 2020-11-17T23:57:45.000Z	
	8.81 тв
VIRG0 2020-11-17T23:57:45.000Z	
	1.34 GB

DIDs per Experiment (replica=1) Number of DIDs Number of files Number of datasets Number of containers 25.3 K 25.2 K 5 0 194 192 2 0 401 398 3 0

ATLAS	7.604 K	6.952 K	652	0	235 MB	
LSST	350 K	350 K	13	0	18.5 MB	
СТА	564 K	563 K	1.458 K	0	9.273 MB	
SKA	2.736 Mil	2.703 Mil	33.0 K	25	3.259 MB	
VIRGO	15.6 K	15.6 K	10	0	86.4 kB	
400 K		Events by type ov	er time (only scope filtered	I)		total ~
100 11				trans	fer-queued	796.0 K
350 K				- trans	fer-submitted	474.2 K

Funded by the European Union's Horizon 2020 - Grant N° 824064

12 March 24th, 2021

Riccardo.Di.Maria@cern.ch

LOFAR

FAIR

CMS

MAGIC

13.5 K

 Transfer Matrix: transfer-done/transfer-submitted dst

SIC

DESY-DCACHE

SARA-DCACHE

PIC-DCACHE

EULAKE-1

LAPP-DCACHE

IN2P3-CC-DCACHE

CNAF-STORM

ALPAMED-DPM

GSI-ROOT

INFN-NA-DPM

LAPP-WEBDAV

INFN-NA-DPM-FED

INFN-ROMA1

DESY

DCACHE

SARA

DCACHE

PIC

DCACHE

FUI AKE-1 LAPP- IN2P3-CC

NO DATA

CNAF

STOR

GSI-ROOT

AL PAMED

INFN-NA-

NO DATA

LAPP-

WERDAY

INFN-NA-

DPM-FFD

INFN

ROMAT

NO DATA

ATLAS 2020 11 17T22-E7-4E 0007

ESCAPE Deployment Model and Techniques

- Infrastructure should be resource-aware (minimal environment) for an improved project sustainability and for the successful exportability adoption by partners and experiments
 - deploy a manifold system utilising a lightweight but complete implementation
 - sciences at different scale and trying to address multiple future use case, including experiments with different data management requirements than ATLAS and CMS
 - Kubernetes cluster on the CERN OpenStack
 - a master of 4 vCPUs, 8 GiB RAM, and 40 GB local storage
 - 6 nodes each of 8 vCPUs, 16 GiB RAM, and 70 GB local storage
- ESCAPE tailors functional services on experiments/sciences needs
- Beyond ESCAPE term, different sciences will be able to deploy and manage the subset of services they will want to run and/or customise at their convenience

ESCAPE Deployment Model and Techniques

- Fruitful extended collaboration with teams and experts of the various components within and beyond ESCAPE
 - e.g. MonIT, CERN Cloud, OracleDB, Kubernetes, as well as Rucio, IAM, FTS, CRIC, etc.
 - <u>Rucio/JupyterLab Integration Project</u> within CERN-HSF Google Summer of Code (M. Aditya Hilmy) and used by LOFAR to analyse data during the Data Lake assessment
- Synergy with Rucio team allowed to tailor infrastructure to cope with experiments needs
 → exploring new Rucio phase space
- Sites, sciences, and experiments strongly involved and committed

ESCAPE Data Lake **24-hour Full Dress Rehearsal** Preparation

- Data Lake available 24/7 to ESCAPE users even though not-production → FDR as specific testing-focused time-window
 - goal is to cover experiment data workflow needs on a single day (from 9 sciences)
 - perspective from scientists and from sites
 - assessment of robustness of the various Data Lake components, tools, services, etc.
- Fortnightly assemblies for data injector demonstrators towards FDR
 - even out differences in knowledge among partners
 - acquiring know-how on management and utilisation of technology stack sites deeply involved
 - hot-topics: data injection and access, QoS, data life-cycles
 - deployment&operation team gathered to identify and solve problematic situations
- Improving and deploying features and functionalities for both Kubernetes and Rucio

ESCAPE DL 24-hour Full Dress Rehearsal Takeaway -> Workshop

CTA - Simulate a night-data-captured from telescope in Canary Island for 6h: 500 datasets of 10 files ingest.

March 24th, 2021

ATLAS - Storage QoS functionality tests: upload files from LAPP cluster to ALPAMED-DPM (FR) and INFN-NA-DPM (IT).

Request transfer to 1 RSE **QoS=SAFE** and 2 RSEs **QoS=CHEAP-ANALYSIS**.

LOFAR - Astronomical radio source 3C196 image using LOFAR data. The raw visibility data were downloaded via rucio from the EULAKE-1 and processed on OpenNebula at SURFsara using the container based LOFAR software.

LSST - Simulate production conditions: ingest the HSC RC2 dataset from CC-IN2P3 local storage to the Data Lake, **at a realistic LSST data rate** (20TB/24h); **confirm integrity and accessibility of the data via a notebook**.

The image is a reconstruction drawn within a Jupyter Notebook accessing the data used in the Full Dress Rehearsal.

@x.espinal Riccardo

1500

Riccardo.Di.Maria@cern.ch

Funded by the European Union's Horizon 2020 - Grant N° 824064

16

ESCAPE DL 24-hour Full Dress Rehearsal Takeaway \rightarrow Workshop

MAGIC - Mimics a real MAGIC observation use case. Remote storage (Data Lake aware) **next to the telescope** acts as a buffer for subsequent data injection to the ESCAPE Data Lake (and local deletion after success)

FAIR - Upload 1 file (1 GB) every 10 minutes for the whole duration of the rehearsal. Request 2 replicas in **QOS=SAFE** and 1 replica in **QOS=CHEAP-ANALYSIS**.

EGO/VIRGO - Upload 4h of VIRGO public data sampled at 4 kHz from an EGO server to the Data Lake. Download data to CNAF-STORM. Data are split into 1s samples. Making available the real-time strain data to pipelines and tools assessing the data quality.

SKA - Pulsar Observations injection test. For 4 hours at any point during the 24h, injecting new group of files in a dataset every 10 minutes. Files fall into two containers, representing different SKA Projects. 24h test moving data on basis of QoS class.

17

@x.espinal Riccardo.D

Riccardo.Di.Maria@cern.ch

ESCAPE Conclusion and Next Steps

- ESCAPE DIOS/WP2 managed to pilot a Data Lake infrastructure
 - fulfilling functional data management needs of flagship ESFRIs from several scientific disciplines
 - sensible technologies choice, conceived in WLCG environment and LHC experiments
- Full Dress Rehearsal Assessment of the Data Lake
 - pivotal role to test model, concepts, and pilot infrastructure
 - chosen technologies offer the right functionality for a broader set of communities
 - Astro-particle Physics, Electromagnetic and Gravitational-Wave Astronomy, Particle Physics, and Nuclear Physics **pursuing together** FAIR and open-access data principles
 - ESCAPE contributing to broaden the scope of some of those technologies according to partners needs (in line/collaboration with providers plans)

Riccardo.Di.Maria@cern.ch

ESCAPE Conclusion and Next Steps

- ESCAPE mature for prototype phase \rightarrow full scale exercise for end of the year
 - close-to-production test on data management and data processing
 - experiments needs and interests, FAIR data management vs. embargoed (Open Data policy), fully multi-VO, implementation of token-based AAI
 - complementing existing efforts in WLCG → ESCAPE as perfect environment to test new models/concepts
 - exploring non-HEP-standard scenarios, etc.
 - collaboration with other EU-funded projects on-going
 - ESCAPE partners to explore first-hand technology stack
- ESCAPE end in $2022 \rightarrow$ addressing long term sustainability
 - adopting components from established scientific contexts, leveraging services supported by large open source communities, documenting know-how on integration and deployment, ensuring services become part of EOSC-core

