ISGC 2021, Mar. 22 ~ 26, 2021

Study of Dark Matter at e+ e- collider using KISTI-5 supercomputer

2021. 3. 26

Kihong Park and Kihyeon Cho*

University of Science and Technology and Korea Institute of Science and Technology Information

* Corresponding author

Contents

- 1. Introduction
- 2. Methods
- 3. Study of Dark Matter at e+ e- collider
- 4. Results
- 5. Summary

1. Introduction

What is dark matter?

- Dark Matter (DM) is invisible matter.
- DM occupy 26 % of the density of the universe.
- We have sufficient evidence of existence of DM.
- But, DM is not detected yet.
- We can search for DM at collider experiments.

Ref. PDG

Courtesy NASA

Motivation

- Cross section of dark matter is very small.
 ⇒ Huge amount of simulation data is required.
- Hence, parallel processing is important to increase the efficiency of research in High Energy Physics (HEP).
- To study parallel processing, we have compared the KISTI-5 supercomputer (Nurion KNL and SKL) and the local Linux machine.

2. Methods

Specification of used machines

Specification	KISTI-5 KNL	KISTI-5 SKL	Local Linux machine
OS	CentOS 7.4	CentOS 7.4	Scientific Linux 6.5
Processor	Intel Xeon Phi 7250 1.4 GHz	Intel Xeon Skylake (Gold 6148) 2.4 GHz	Intel Xeon CPU X5560 2.8 GHz
Architecture	Many-core	Multicore	Multicore
Number of cores/CPU	68	20	4
Number of CPUs/node	1	2	8
Number of cores/node	68	40	32
Number of total nodes	8,305	132	1
Number of total cores	564,740	5,280	32

Architecture of KISTI-5 supercomputer

8

Flow chart of physics simulation

3. Study of Dark Matter at e+e- collider

Signal Mode

$e^+ e^- ightarrow \mu^+ \mu^- A'$. $\downarrow \mu^+ \mu^-$

• Feynman diagram of signal process [1, 2]

e^{-} $\mu^{+} \mathcal{O}_{\mathbf{A}^{*}} \mu^{+}$		Symbol (paper)	Symbol (MadGraph 5)	Default value	Description
	А	α_{EW}^{-1}	aEWM1	1.325070e+02	Inverse of the electromagnetic coupling
A B D μ	В	α_{EW}^{-1}	aEWM1	1.325070e+02	Inverse of the electromagnetic coupling
e^+ μ^-	С	$g_{l_{22}}^{v}$	gvl22	1	Muon-Y1 vector coupling
 Insung Yeo and Kihyeon Cho, <i>J. Astron. Space Sci.</i> 35 (2018) 67-74. Shuve Brian and Itay Yavin, <i>Physical Review D</i> 89.11 (2014) 113004. 	D	$g_{l_{22}}^{ u}$	gvl22	1	Muon-Y1 vector coupling

• Simplified model [3, 4]

- The Standard Model particles + Dark Mat ter + Mediator particles (dark photon)
- A': dark photon with spin1
- Imported in MadGraph5

[3] Daniele, et al., Alves, *Journal of Physics G*. Nuclear and Particle Physics, 39(10) (2012) 105005.
 [4] Kentarou Mawatari's ppt (KAIST-KAIX workshop 07/15/19).

All Feynman diagrams of signal process

Background (SM) at generation level

$$e^+ e^- \rightarrow \mu^+ \mu^- \mu^+ \mu^-$$

Signal at generation level with parameters(1)

$$e^+ e^-
ightarrow \mu^+ \mu^- A'$$

 $\downarrow \mu^+ \mu$

Signal at generation level with parameters(2)

Cross section depending on **both CM energy and dark photon mass**

Cross section depending on coupling constant

Cross section depending on **both dark photon mass and coupling constant**

Study of CPU times on machines

Process	e+ e> mu+ mu- A', A' -> mu+ mu-	
Number of events	10,000	
CM Energy	10.58 GeV	
Dark photon mass	0.01 GeV	
Coupling constant	0.1	
Number of jobs	15	

Specification	KNL	SKL	local Linux machine
Processor	Intel Xeon Phi 7250 3.0464 TFLOPS/CPU	Intel Xeon 6148 1.536 TFLOPS/CPU	Intel(R) Xeon(R) CPU X5560 2.80GHz
Number of cores/node	68	40	32

Full simulation

Physics simulation only

Study of CPU times on number of jobs

Process	e+ e> mu+ mu- A', A' -> mu+ mu-			
Number of events	10,000			
CM Energy	10.58 GeV			
Dark photon mass	0.01 GeV			
Coupling constant	0.1			
Comment	Physics simulation only			
Number of jobs	1, 3, 6,, 60, 63, 27 for KNL 1, 3, 6,, 27, 30, 33 for SKL 1, 3, 6, 9, 12, 15 for local machine			

Specification	KNL	SKL	local Linux machine
Processor	Intel Xeon Phi 7250 3.0464 TFLOPS/CPU	Intel Xeon 6148 1.536 TFLOPS/CPU	Intel(R) Xeon(R) CPU X5560 2.80GHz
Number of cores/node	68	40	32

◆ KNL ■ SKL ▲ Local Linux machine

The smaller the slope, the better the parallel processing efficiency.

Parallel processing efficiency of the SKL is much better than that of the local Linux machine.

Summary

- We use dark photon that couples only to heavy lepton for signal process.
- At the generation level, we have studied the cross section depending on various parameters.
- We have compared KISTI-5 supercomputer(KNL and SKL) with local Linux machine to study efficiency of parallel processing.
- The results will help to optimize HEP software using HPC.

References

[1] Insung Yeo and Kihyeon Cho, J. Astron. Space Sci. 35 (2018) 67-74.

[2] Shuve Brian and Itay Yavin, Physical Review D 89.11 (2014) 113004.

[3] Daniele, et al., Alves, Journal of Physics G: Nuclear and Particle Physics, 39(10) (2012) 105005.

[4] Kentarou Mawatari's ppt (KAIST-KAIX workshop 07/15/19).

[5] Kihong Park and Kihyeon Cho , J. Astron. Space Sci. 35, (2021) 55-63.

ACKNOWLEDGMENTS

- Insung Yeo and Myeong-Hwan Mun.
- The National Supercomputing Center with supercomput ing resources including technical support (KSC-2019-C RE-0212).

Thank you for your attention.

kihong@kisti.re.kr