International Symposium on Grids & Clouds 2021

March 23rd, 2021

Reinforcement Learning for Smart Caching at the CMS experiment

Tommaso Tedeschi^{1,2} (<u>tommaso.tedeschi@pg.infn.it</u>) On behalf of the CMS collaboration

Mirco Tracolli^{1,2,3}, Daniele Spiga², Loriano Storchi², Diego Ciangottini², Marco Baioletti¹, Valentina Poggioni¹

¹ Università degli Studi di Perugia, Perugia, Italy ² Istituto Nazionale di Fisica Nucleare - Sezione di Perugia, Perugia, Italy ³ Università degli Studi di Firenze, Florence, Italy

Outline

CMS bits to base of fice bases

- Introduction to the context
 - Data Lake and Data caching
- Smart Caching
 - Reinforcement Learning
 - Q-Learning
 - DQN
 - QCACHE
 - SCDL and SCDL2
 - DQN
- Results
 - Evaluation metrics
 - Dataset and simulation
- Conclusions and next steps

HL-LHC challenges

In 2026+ LHC will enter the EB era (**HL-LHC**):

expected storage and computing needs are above the expected technology evolution

Need for a new model to optimize hardware and operational costs

Storage is the most concerning problem due to cost and lack of straightforward solutions. R&D and combination of many different ones:

- Intensive usage and integration of specialized hardware (GPU, FPGA, etc..)
- Reduced data format (NanoAOD at CMS)
- New distributed model

Data Lake @HL-LHC

Data Lake Model

- A small number of Data Lakes across the world with a reduced number of storage endpoints wrt the current WLCG model
- Envisions a mix of distributed caches directly accessed from compute nodes

In a Data Lake like design:

- the **network** is obviously central
- **caches** are crucial in the design of analysis optimized systems

A lot of R&D (and testbedding) has been done on both topics:

- WLCG DOMA
- EU projects like ESCAPE
- US CMS Data lake proposal
- SoCal Cache
- INFN distributed cache

• ...

CMS already tested cache system usage **benefits**. In particular it was shown that the usage of caches allows to:

- **reduce** the overall WAN **traffic**
- make the processing job that requested the data **more efficient** by reducing I/O wait time for remote data
- provide **read ahead** capability
- save disk space

We also foresee a local cache as a key component of the future **Analysis Facility** we are prototyping at INFN

Now the main goal is to enhance cache efficiency with a smart caching algorithm

The aim of the project is to **develop a** smart cache system using AI algorithms in the CMS experiment context:

- AI directly manipulates cache memory, deciding what to write or delete
- The goal is to obtain an algorithm that uses fewer storage resources wrt classic cache algorithms (LRU, LFU, etc..) while maintaining similar performance

Cache Client Storage AI Memory **OCACHE**: a Reinforcement Learning-based framework

6

Reinforcement Learning (RL) is the branch of Machine Learning that studies agents that learn through an iterative "trial and error" process interacting with an environment.

At each step, a RL agent receives a **state** (or a partial observation) from the environment as input and chooses a certain **action**, getting a **reward** (or punishment) from the environment, which is used to update the agent itself.

The ultimate goal is to maximize the cumulative reward (the so-called **return**)

A RL agent learns a **policy**, which is the function π that the agent uses to choose which action to take given a certain state or observation. In principle, the policy could be either deterministic or stochastic.

A RL agent seeks to find the **optimal policy** π^* , which maximizes the expected return when the agent acts according to it.

Optimal Action-Value Function *Q***(s,a)* : gives the expected return if, starting from *s*, you take an arbitrary action *a* and from then on you act according to the optimal policy. It obeys the **Bellman Equation**:

$$Q^*(s,a) = \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} [r(s,a) + \gamma \max_{a'} Q^*(s',a')]$$

Q-learning

Q-learning is a family of RL methods that try to learn $Q^*(s,a)$ function.

An ε -greedy Q-learning agent tries to learn $Q^*(s,a)$ function acting ε -greedily, i.e. selecting a random action a (exploration) with probability ε (that decays over time), otherwise selecting action a (exploitation) according to

 $a(s) = \arg\max_{a'} Q(s, a')$

Q values are saved in a tabular form for each *(s,a)* pair, and an update is performed at each step, according to

$$Q^{new}(s,a) \longleftarrow Q(s,a) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1},a') - Q(s_t,a_t))$$

DQN

The Deep Learning extension of RL is called **Deep Reinforcement Learning** (**Deep RL**), where RL functions are approximated by Deep Neural Networks (DNNs).

The most classic and fundamental Deep RL extension of Q-learning is **DQN algorithm**:

Q(s,a) is approximated by a DNN: the objective function is still based on the Bellman equation, and an experience replay buffer and a target network are used for a stable training

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{O} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1.T do
       With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_{i}, a_{j}, r_{j}, \phi_{j+1}) from D
       Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
        Every C steps reset \hat{Q} = Q
   End For
End For
```

From Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015). https://doi.org/10.1038/nature14236

Two Q-learning or DQN agents:

- Addition agent: chooses whether to write or not a requested file
- Eviction agent: chooses whether to remove or not a cached file

QCACHE - SCDL and SCDL2

Simple Q-learning agents (Q-table)

hit* = requested file is in cache *miss* = requested file is not in cache

• SCDL¹:

- Contextual Bandit approach
- One agent: addition agent + LRU
- Positive or negative reward proportional to the size of the requested file according to the increase or decrease of the data read from the cache memory

• **SCDL2**²:

- SCDL extension to a full Reinforcement Learning approach
- One agent: addition agent + LRU
- Unitary rewards according to the historical number of hit or miss of the file, also summing additional malus or bonus if a specific situation is verified

For both

- Agent inputs (discretized):
 - file statistics + cache
 - occupancy percentage + cache hit rate
- Use of high and low watermarks

¹M. Tracolli, M. Baioletti, V. Poggioni, D. Spiga, Caching suggestions using reinforcement learning, in International Conference on Machine Learning, Optimization, and Data Science, pp. 650–662, Springer, 2020

²M. Tracolli, M. Baioletti, V. Poggioni and D. Spiga,Effective big data caching through reinforcement learning, in2020 19th IEEE International Conference on Machine Learning and Applications(ICMLA), pp. 1499–1504, IEEE, 2020.

QCACHE - DQN

DQN agents

• Each file request or each cached file corresponds to a specific state

- Whenever a file request comes in, addition agent chooses whether that file has to be cached or not
- Every k requests, or if the high watermark is reached, eviction agent is applied on every cached file choosing which has to be evicted or kept
- Agents inputs (continuous):
 - file statistics + cache occupancy percentage + cache hit rate

ε exponential decay

- **reward is based on hit/miss information** it is computed for both agents observing h_{window} requests after the action:
 - If action was "keep":

 $r = \begin{cases} n_{hit} \cdot size, & \text{if } n_{hit} > 0\\ -size, & \text{otherwise} \end{cases}$

• If action was "don't keep":

 $r = \begin{cases} -n_{miss} \cdot size, & \text{if } n_{miss} > 0\\ size, & \text{otherwise} \end{cases}$

Keras for ML training (Tensorflow back-end), C++ classes exported via Pybind11 for cache environment

hit* = requested file is in cache *miss* = requested file is not in cache In order to evaluate and compare the performance of our solution to those of the classic caching algorithms we defined three metrics.

• To evaluate the quality of a cache in fulfilling the client requests: *t*

• To evaluate the operational cost of the cache:

$$cost = \frac{writtenData + deletedData}{cacheSize}$$

• To evaluate the trade-off between the aforementioned metrics:

 $throughput = \frac{readOnHitData}{cacheSize}$

score = throughput - cost

Dataset and simulation

Dataset obtained from historical monitoring data about CMS experiment analysis jobs in **2018**^{1,2} (data popularity) filtered for the **Italian region**: these data are used to **simulate daily file requests** flow for all 2018.

Different cache sizes are simulated:

- 100TB
- 200TB
- 500TB

Bandwidth limit (10 Gb/s) is also considered

¹V. Kuznetsov, T. Li, L. Giommi, D. Bonacorsi, and T. Wildish. Predicting dataset popularity for the CMS experiment.arXiv preprint arXiv:1602.07226, 2016

²M. Meoni, R. Perego, and N. Tonellotto. Dataset popularity prediction for caching of CMS big data. Journal of Grid Computing, 16(2):211–228, 2018

Daily num. of users and sites

Daily average num. of requests per file

Tommaso Tedeschi - tommaso.tedeschi@pg.infn.it Reinforcement Learning for Smart Caching at the CMS experiment ISGC 2021 - March 23rd, 2021 15

DNN parameters

Parameter	Value
Hidden layers	2 (16 and 32 neurons, sigmoid activation)
Output layer	2 neurons, linear activation
Optimizer	Adam ($lr = 0.001$)
Loss function	Huber ($\delta = 1$)
Weights initialization	Glorot Uniform
Batch size	32

RL parameters

Parameter	Value
Replay memory	1M
γ	0.5
Addition h _{window}	100000
Addition ε decay rate	0.0000003
Addition ε starting value	1
Addition ε lower limit	0.1
Addition target model update	10000
Eviction <i>h_{window}</i>	200000
Eviction ε decay rate	0.0000005
Eviction ε starting value	1
Eviction ε lower limit	0.1
Eviction target model update	10000
Eviction k	50000

As an example, ε decay throughout the year for both DQN agents in 100TB simulation:

Results

18

100) TB - 10 Gb/s				
Algorithm	Score	Throughput	Cost		
DQN QCACHE	-0.17	0.28	0.45		
SCDL QCACHE	-0.32	0.32	0.64		
SCDL2 QCACHE	-0.35	0.31	0.67		
Write everything + LRU	-0.63	0.35	0.98		
Write everything + LFU	-0.75	0.30	1.05		
Write everything + Size Big	-0.86	0.26	1.12		
Write everything + Size Small	-0.88	0.25	1.13		
200 TB - 10 Gb/s					
Algorithm	Score	Throughput	Cost		
DQN QCACHE	-0.08	0.14	0.22		
SCDL QCACHE	-0.11	0.19	0.30		
SCDL2 QCACHE	-0.11	0.19	0.30		
Write everything + LRU	-0.23	0.21	0.44		
Write everything + LFU	-0.29	0.18	0.47		
Write everything + Size Big	-0.38	0.15	0.53		
Write everything + Size Small	-0.41	0.14	0.55		
500 TB - 10 Gb/s					
Algorithm	Score	Throughput	Cost		
SCDL2 QCACHE	0.00	0.10	0.10		
SCDL QCACHE	0.00	0.10	0.10		
DQN QCACHE	-0.03	0.06	0.09		
Write everything + LRU	-0.04	0.10	0.14		
Write everything + LFU	-0.06	0.09	0.16		
Write everything + Size Big	-0.11	0.08	0.18		
Write everything + Size Small	-0.13	0.07	0.20		

Tommaso Tedeschi - tommaso.tedeschi@pg.infn.it Reinforcement Learning for Smart Caching at the CMS experiment ISGC 2021 - March 23rd, 2021

DQN has a better score on small-sized caches:

- Maybe, the 500TB cache could be above the actually useful size threshold: probably a whole file set, considered as all accessed files during a specific period, fits in it.
 - As a result, the smartness-related advantages are quite low with the biggest size used in the simulations.
- DQN parameters have been optimized for 100TB cache

These results show that a smart caching approach is able to **reduce cost** while keeping **throughput at a reasonable value** at simulation level (where delete and write are two "zero-time" operations) \rightarrow We expect that a **lower cost has a big impact in a real environment** where fewer file deletion and writing operations imply better performances in terms of files serving.

Next steps:

- Optimizing parameters for various cache sizes
- Enhancing reward-giving process
- Inserting domain features
- Testing on US data
- Working on testbed setup to test in a real environment