

HIFIS transfer service: FTS for Helmholtz

Tim Wetzel¹, Paul Millar¹, Uwe Jandt¹, Patrick Fuhrmann¹

¹Deutsches Elektronen-Synchrotron DESY

International Symposium on Clouds and Grids Mar 24, 2021

Helmholtz Association

- Founded in 1995 to formalise relationships between research centres
- Members: 19 autonomous research centres in Germany
- Mission: Contributions to grand challenges facing society, science and industry
- Fields: energy, earth & environment, health, aeronautics, space & transport, matter and key technologies
- Growing importance of cloud access to common data treasure and -services
- Rapidly growing data exchange from research instruments requires excellent data networking
- Growing connections between Helmholtz, EOSC and FAIR

Helmholtz Incubator

Helmholtz aims for joint research & information environment for all Research Fields

Helmholtz
Information & Data
Science Incubator

Why data transfers?

- Large data sets in collaborative research projects
- Data analysis often sensitive to latency
- Data locality is important!
- HIP and HelmholtzAl projects use data storage at the computing sites
- Collaborating centres distributed over Germany
- Reliable, comfortable and robust transfer enspoints needed

Transfer service

- Core service in HIFIS backbone
- CERN's FTS3 as backend
- webFTS as comfortable WebUI
- FTS3-REST as CLI for scripted transfers
- Planned: ■RUCIO for policy driven transfers

- Apache httpd as passive endpoint
- Lightweight solution for ad-hoc transfers

Passive endpoint components

Instance digests

- mod_want_digest (github.com/wetzel-desy/mod_want_digest):
 - Implements instance digests in accordance with RFC 3230 (HTTP headers "Want-Digest" and "Digest")
 - Supports ADLER32, MD5 and SHA digests
 - Alpha version until now
 - ✓ Digest caching mechanism or on-demand calculation
 - Cached digests return faster for large files than on-demand calculation
 - Coupled with inotifywait daemon for non-HTTP transfers
 - → Code cleanup next

Openstack VM

Configs/sources available on https://gitlab.hzdr.de/hifis/hifis-transfer-service

Kubernetes/Helm

Performance/Learnings

- Performance
 - Transfer rates of 40-120 MiB/s (overall) reached in tests
 - Negligible overhead from virtualization
 - Fast retrieval of instance digests thanks to caching
- Learnings:
 - Transfers can interfere with k8s readiness/liveness probes
 - Data access must be regulated internally
 - Need to disable mod_deflate, prevents sending content-length in http responses
 - Custom patch of mpm-itk needs to be brought upstream

Summary & Outlook

- Apache httpd in VM/Docker container
 - Easily deployable, lightweight storage endpoint
 - Comprehensible setup
 - Suitable for ad-hoc transfers at smaller sites.
- More testing, optimization and enhancements to happen
 - Use of TPC planned and in development (KIT)
 - Pilots with EGI & WLCG

All information (including git repository links) available on

https://www.hifis.net/doc/core-services/fts-endpoint/

Thank you! Questions?

Grateful acknowledgements: Jan Erik Sundermann (KIT) Mihai Patrascoiu (CERN) Andrea Manzi (EGI)