®

ICEPP

The University of Tokyo

Event classification using
Graph Neural Network

ISGC 2021 @ online
26 /03 /2021

International Center of Elementary Particle Physics, University of Tokyo
Masahiko Saito, Y. liyama. T. Kishimoto, R. Sawada, J. Tanaka, K. Terashi

Deep learning applications for particle physics

* High-luminosity LHC starts from 2027, collecting 3000 fb-! pp collision events with Vs =14 TeV.
* Need to leverage the quite big data to the fullest extent
* Machine learning would become one of the key techniques to utilize such data in the next

decade of LHC experiments.

* Machine learning, especially deep learning, is already used in many tasks in collider

experiments.

* jet tagging, event classification, calorimeter shower simulation, anomaly detection, ...
* HEPML-LivingReview: ~ 500 papers

* There are many types of deep learning models and techniques.

https://iml-wg.github.io/HEPML-LivingReview/

Typical deep learning model

Multi-layer perceptron (MLP)
- Fully Connected (FC), Deep neural network (DNN), Dense, ...

Fx—C O—7C
\%QMQX'{QMK
£y (“}0,7 N7\
YA AEENAEERNAIRN

input data

Output

9,
/ " N/ \/ N/ \“ \/ \/
RORCRA

v O

* Most basic and famous deep learning model

* All nodes are connected to all nodes in a next layer
* Strong approximation capability
 Many trainable parameters

* Good performance even if using low-level inputs

Typical deep learning model

Convolutional neural network (CNN)

Input data

e Often used in image recognition tasks.
e Convolution with small filters enables to
* be robust for a global shift
» effectively learn the relationships between neighbor
pixels
* e.g.CNN is used in top-tagging using calorimeter energy
distributions as images

40Wir =

35

30

25

< 20
154
10 A

5.

0

Top-tagging
(SciPost Phys, 7, 014 (2019))

Signal

0

10

20

30

40

Background

40
35
30
25
< 20
15

10

102

10!

10°

10-1

1072

1073

https://scipost.org/10.21468/SciPostPhys.7.1.014

Typical deep learning model

Recurrent neural network (RNN)

- LSTM, GRU
Output Q Q Q RNN b-tagging

(ATL-PHYS-PUB-2017-003)

Unrolled RNN
> [N]

N
ﬂ\V 4
fovedir | e
Sof&\’lax
Input data (
V1 V2 Vv Y

* Used in time series analysis and natural language processing

* By using outputs recurrently, RNN can handle sequential data and variable inputs

* e.g. Tracks in jets, where the number of tracks varies from jet to jet, are processed
by RNN for b-tagging

Track N

3

http://cdsweb.cern.ch/record/2255226

Typical deep learning model

Multilayer Perceptron(MLP) Convolutional NN (CNN) Recurrent NN(RNN)

2 N4 I &
NSO ;‘,’; ® -

‘<0

-
,\»0 f,‘\‘,v

« tabular data « Grid data « Sequential data
« All correlation between » Local correlation « Time correlation
all input variables « Same manipulation for « Same manipulation for different
different positioned data time data

Q: What’s types of deep learning model should be used ?
A: A deep learning model should be built considering the structure of the target task

(domain knowledge, inductive bias)
- resulting in a reduction of model parameters, mitigation of over-fitting

e Data structure used in HEP is often compatible with a graph. 6

Data structure in HEP

2007.13681 * Representation as a graph has
advantages for the data satisfied that
* the number of entities varies
* indexing (ordering) of entities is not
intrinsic
* relations between entities can be
defined explicitly.

 Graph Neural Network (GNN) is a deep

learning model that handles a graph as
input data

 This talk focuses on the event
classification using GNN

(c) Event classification @ Jet classification 7/

https://arxiv.org/abs/2007.13681

Problem/Experiments

Signal and Background

Signal: ttH(—>bb) Background: ttbb
b

b

q
q
b

b

q
q

* Classification problem of signal (ttH(— bb)) and background (ttbb)

* Focus on no lepton channel

e 4 bottom-quark + 4 light-quark
e 8 jets are observed

* There are many jets, and it’s hard to reconstruct/identify particle origins.
This classification is challenging!

Problem/Experiments

Dataset

* Use simulation dataset
 MadGraph5 + Pythia8 + Delphes
 Emulate a response of ATLAS detector

* Generate 1M events for signal and background

* Training / Validation / Test=80%:10 % : 10 %

Input variables

* Lorentz vector (p,, Dy Dz E) + b-tag label for each jets

* 8 (jets) x5 (features/jet) = 40 features

15t jet

2nd jet

31 jet

4th jet :

Input variables

signal

Background
; x;:\ j"- |
(a) pr (b) n (c) Mass (d) B-tag
a \ f——
A ' 1
N \ —
(e) p1 (f) n (g) Mass (h) B-tag
.IIF\? :
I\ | |
(i) pz () m (k) Mass (1) B-tag
A | |
b X ,
(m) pr (n) n (o) Mass (p) B-tag
AN |
(a) pr (r)n (s) Mass (t) B-tag
(u) pr (v) (w) Mass (x) B-tag

Overview of Graph Network

1806.01261

/é;:;al

Graph

~

Node

1 O Edge

A
Edge B

Node

O.
\

Graph consists of nodes and edges

Each node and edge has attributes

1
2
3
4

Node attributes / Edge attributes

o O w >

Prediction value is calculated by iteratively updating node/edge attributes

 Update rule is common for all nodes (edges).

https://arxiv.org/abs/1806.01261

Input graphs

E E E E
Py Py Py Py
Py Py Py Py
Py Pz Py Pz
btag btag btag btag

E E E E
Py Py Py Py
Py Py Py Py
Py P, P, P,

* There are 8 jets and 5 features for each jet,

which are used as input variables

b
q

Input graphs

* There are 8 jets and 5 features for each jet,

which are used as input variables

* Each jetis assigned as a node.

* Node attribute: (E, py, Dy, D, b-tag) (R>)

e Each node connects to all other nodes
(full connection)

* Edge attribute: RY

* represents a relation between two jets

Update of graph

c

<
yavl

&
|

Edge block Node block Global block

Edge update

b, Nodel * Update edge attributes using neighbor node attributes

* Updated by multilayer perceptron (MLP)

Node2

(5 + 5) (Nedge)

feature

Update of graph O

c

<
/L7

&

Edge block Node block Global block

Edge update

b, Nodel * Update edge attributes using neighbor node attributes

* Updated by multilayer perceptron (MLP)

MLP

Py Nodes e Update all edge attributes using the same MLP

(5 + 5) (Nedge)

feature

Update of graph

* Update node attributes using

c

neighbor edge attributes

<

/|//|
)
E

U
u
(/)v
Ipc%va(:—)ul
E —|—={(¢° —F'

Edge block Node block Global block

Edge update Node update

™

Iljx G Summation of all | —
p}Z, Nodel neighbor edge — B
btag/ , | a attributes 2 M o -
- o — ﬁ
. ——] Sl] —
E = 1= =
Py |:> g i
P, Node2 §%o
Py —
btag B | H — ||

da
(5+5) VF o \o NS,) NS

15

Update of graph

c

<!
v
)

(/)v
Ipc%va(:—»ul
E— (/)e -5

Edge block Node block

Global block

Edge update

Nodel

MLP

Node2

(5+5) e)

feature

Summation of all
neighbor edge
attributes

=

* Update node attributes using
neighbor edge attributes
* Update all node attributes using

the same MLP

Node update

)

eighbor
Il

[T TTH{ITT]
MLP

edge attributes

Summation

d d
\o NS,) W)

16

Update of graph

* Calculate output value using all

c

<
v
(&

m - node attributes and MLP

Ipcav| P —>u|
E - ¢(j — El

Edge block Node block Global block

Node update

:\ Output (Probability of signal)
_ /)

— Summation of all
node attributes

-

(a

=

I'T

>]

MLP
|
MLP

Summation of neighbor

edge attributes

S+ Nisarre) Wedkirs) / NG W

17

Update of graph

* Calculate output value using all

c

<
yavl

S i
> - node attributes and MLP

—»ul

e—v |

B p

E —|(# . * The last node is used as output

Edge block Node block Global block

which is used for the calculation of

loss function

:\ Output (Probability of signal)
_ /)

= — Summation of all
node attributes

-

Node update

(a

I'T

—al

MLP
|
MLP

Summation of neighbor

edge attributes

|
[

St Njotture) (Nfeikire))/ N W

18

Summary of Graph network

/— Node to Edge 4\

jetl

MLP

q

jet2

_ 6+ Wik)

Sum

=

Three trainable MLP modules

3

[T I,

Node attribut

Sum of edge
attributes

Wedye

T

feature ~

Edge to Node 4\

MLP

/— Node to output —\

Sum

[TTTTTTH
MLP

=37)

(Nﬁ;ﬁfwe=y @’a‘itgre:n) (1)/

Each MLP structure

* two hidden layer with 256 nodes

e Applied Batch normalization for all layers

* Activation function: ReLU (sigmoid for the last layer)

Optimized the size of node/edge attributes and MLP
layer structure to maximize AUC

Implemented using graph nets library that is
developed by DeepMind

19

https://github.com/deepmind/graph_nets

Reference models

 Compare with three machine learning models
1. Multilayer perceptron (MLP)
* Input: 40 variables in a row
 Optimized the number of hidden layers and the number of nodes.
2. Long short-term memory (LSTM)
* |Input: particles (5 variables, maximum 8 particles) ordering by
transverse momentum (p+)
 Optimized the number of hidden states
3. Boosted decision tree (BDT)
 Input: 40 variables in a row
e Optimized the depth of tree
e Used XGBoost

 Hyperparameters of each model is optimized to maximize AUC, then compare the
performance of the models with the best hyperparameters

https://github.com/dmlc/xgboost

Result

0.80 * Graph Network outperforms MLP, LSTM and
Preliminary XGBoost

0.78 ~
e Great performance when using the large

0.76 amount of training data

* For the case of using small amount of training

AUC

0.74 1 data, GNN has good performance compared to

MLP

Multilayer perceptron(MLP) * The implementation of inductive bias into
(N. of hidden layers: 2,

N. of nodes per layer : 64)

0.72 A

deep learning models reduces redundant

0.70 -+

10K 100K 1M

model parameters, resulting in improved

Number of training samples performance.

Data Augmentation

* Domain knowledge:
* Physics law and our detector are symmetric for spatial rotation along the beam axis.

Same probability

= 2AITAQ

~ TNIMIA39X3

A human can recognize
a target even if rotating
the images

Data Augmentation

* Domain knowledge:
* Physics law and our detector are symmetric for spatial rotation along the beam axis.

MMMMMMMMMMMMM

* As well as the data augmentation in an image classification task,
we train the model by randomly rotating the events (4-vector) following the
known symmetry on each epoch

E E E E

P P,cos6 — P,sinf gx IR _il:gx
P, P(sinf + P, cosf y Ly
P, P, Py TF,

Result with data augmentation

>

0.80
Preliminary
0784 e e =)
0.76 - -
Q -
= Z2\St
) ’/’ “'0
kz/ \
0.74 - /,//,,
7, .
;200 Multilayer perceptron(MLI
(N. of hidden layers: 2,
N. of nodes per layer : 64)
0.72 -
— nominal
----- with data augmentation
0.70 +——
10K 100K 1M

Number of training samples

)

Data augmentation is effective
even for physical analysis data
* Increasing effective data size
* reduce over-fitting
* Especially effective for MLP
with the small training data

case

24

Summary

* Proper implementation of task structure and domain knowledge as inductive bias is important for
increasing the deep learning model’s performance
* Graph structure often appears in HEP

* Graph network is a deep learning model that handles graphs as input

* Graph network is applied for physics analysis task
e Advantage of Graph network: input variables can be structured, it can handle variable length of
particles, particle ordering is not required

e Graph network outperforms MLP, LSTM, and BDT in our case.

Data augmentation (e.g. increasing data size using spatial invariance of momentum) is also effective

for physics analysis tasks

