®

ICEPP

The University of Tokyo

Event classification using
Graph Neural Network

ISGC 2021 @ online
26 /03 /2021

International Center of Elementary Particle Physics, University of Tokyo
Masahiko Saito, Y. liyama. T. Kishimoto, R. Sawada, J. Tanaka, K. Terashi




Deep learning applications for particle physics

* High-luminosity LHC starts from 2027, collecting 3000 fb-! pp collision events with Vs =14 TeV.
* Need to leverage the quite big data to the fullest extent
* Machine learning would become one of the key techniques to utilize such data in the next

decade of LHC experiments.

* Machine learning, especially deep learning, is already used in many tasks in collider

experiments.

* jet tagging, event classification, calorimeter shower simulation, anomaly detection, ...
* HEPML-LivingReview: ~ 500 papers

* There are many types of deep learning models and techniques.


https://iml-wg.github.io/HEPML-LivingReview/

Typical deep learning model

Multi-layer perceptron (MLP)
- Fully Connected (FC), Deep neural network (DNN), Dense, ...
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* Most basic and famous deep learning model

* All nodes are connected to all nodes in a next layer
* Strong approximation capability
 Many trainable parameters

* Good performance even if using low-level inputs



Typical deep learning model

Convolutional neural network (CNN)

Input data

e Often used in image recognition tasks.
e Convolution with small filters enables to
* be robust for a global shift
» effectively learn the relationships between neighbor
pixels
* e.g.CNN is used in top-tagging using calorimeter energy
distributions as images

40Wir =

35

30

25

< 20
154
10 A

5.

0

Top-tagging
(SciPost Phys, 7, 014 (2019))

Signal

0

10

20

30

40

Background

40
35
30
25
< 20
15

10

102

10!

10°

10-1

1072

1073


https://scipost.org/10.21468/SciPostPhys.7.1.014

Typical deep learning model

Recurrent neural network (RNN)

- LSTM, GRU
Output Q Q Q RNN b-tagging

(ATL-PHYS-PUB-2017-003)
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* Used in time series analysis and natural language processing

* By using outputs recurrently, RNN can handle sequential data and variable inputs

* e.g. Tracks in jets, where the number of tracks varies from jet to jet, are processed
by RNN for b-tagging

Track N
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http://cdsweb.cern.ch/record/2255226

Typical deep learning model

Multilayer Perceptron(MLP) Convolutional NN (CNN) Recurrent NN(RNN)
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« tabular data « Grid data « Sequential data
« All correlation between » Local correlation « Time correlation
all input variables « Same manipulation for « Same manipulation for different
different positioned data time data

Q: What’s types of deep learning model should be used ?
A: A deep learning model should be built considering the structure of the target task

(domain knowledge, inductive bias)
- resulting in a reduction of model parameters, mitigation of over-fitting

e Data structure used in HEP is often compatible with a graph. 6



Data structure in HEP

2007.13681 * Representation as a graph has
advantages for the data satisfied that
* the number of entities varies
* indexing (ordering) of entities is not
intrinsic
* relations between entities can be
defined explicitly.

 Graph Neural Network (GNN) is a deep

learning model that handles a graph as
input data

 This talk focuses on the event
classification using GNN

(c) Event classification @ Jet classification 7/


https://arxiv.org/abs/2007.13681

Problem/Experiments

Signal and Background

Signal: ttH(—>bb) Background: ttbb
b

b

q
q
b

b

q
q

* Classification problem of signal (ttH(— bb)) and background (ttbb)

* Focus on no lepton channel

e 4 bottom-quark + 4 light-quark
e 8 jets are observed

* There are many jets, and it’s hard to reconstruct/identify particle origins.
This classification is challenging!



Problem/Experiments

Dataset

* Use simulation dataset
 MadGraph5 + Pythia8 + Delphes
 Emulate a response of ATLAS detector

* Generate 1M events for signal and background

* Training / Validation / Test=80%:10 % : 10 %

Input variables

* Lorentz vector (p,, Dy Dz E) + b-tag label for each jets

* 8 (jets) x5 (features/jet) = 40 features
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Overview of Graph Network

1806.01261
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Graph consists of nodes and edges

Each node and edge has attributes
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Prediction value is calculated by iteratively updating node/edge attributes

 Update rule is common for all nodes (edges).


https://arxiv.org/abs/1806.01261

Input graphs
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* There are 8 jets and 5 features for each jet,

which are used as input variables
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Input graphs

* There are 8 jets and 5 features for each jet,

which are used as input variables

* Each jetis assigned as a node.

* Node attribute: (E, py, Dy, D, b-tag) (R>)

e Each node connects to all other nodes
(full connection)

* Edge attribute: RY

* represents a relation between two jets




Update of graph
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Edge block Node block Global block

Edge update

b, Nodel * Update edge attributes using neighbor node attributes

* Updated by multilayer perceptron (MLP)

Node2

(5 + 5) (Nedge )

feature



Update of graph O
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Edge block Node block Global block

Edge update

b, Nodel * Update edge attributes using neighbor node attributes

* Updated by multilayer perceptron (MLP)

MLP

Py Nodes e Update all edge attributes using the same MLP

(5 + 5) (Nedge )

feature



Update of graph

* Update node attributes using

c

neighbor edge attributes
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Update of graph
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Update of graph

* Calculate output value using all
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Update of graph

* Calculate output value using all
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Summary of Graph network
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Each MLP structure

* two hidden layer with 256 nodes

e Applied Batch normalization for all layers

* Activation function: ReLU (sigmoid for the last layer)

Optimized the size of node/edge attributes and MLP
layer structure to maximize AUC

Implemented using graph nets library that is
developed by DeepMind
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https://github.com/deepmind/graph_nets

Reference models

 Compare with three machine learning models
1. Multilayer perceptron (MLP)
* Input: 40 variables in a row
 Optimized the number of hidden layers and the number of nodes.
2. Long short-term memory (LSTM)
* |Input: particles (5 variables, maximum 8 particles) ordering by
transverse momentum (p+ )
 Optimized the number of hidden states
3. Boosted decision tree (BDT)
 Input: 40 variables in a row
e Optimized the depth of tree
e Used XGBoost

 Hyperparameters of each model is optimized to maximize AUC, then compare the
performance of the models with the best hyperparameters


https://github.com/dmlc/xgboost

Result

0.80 * Graph Network outperforms MLP, LSTM and
Preliminary XGBoost

0.78 ~
e Great performance when using the large

0.76 amount of training data

* For the case of using small amount of training

AUC

0.74 1 data, GNN has good performance compared to

MLP

Multilayer perceptron(MLP) * The implementation of inductive bias into
(N. of hidden layers: 2,

N. of nodes per layer : 64)

0.72 A

deep learning models reduces redundant

0.70 -+

10K 100K 1M

model parameters, resulting in improved

Number of training samples performance.



Data Augmentation

* Domain knowledge:
* Physics law and our detector are symmetric for spatial rotation along the beam axis.

Same probability

= 2AITAQ
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A human can recognize
a target even if rotating
the images




Data Augmentation

* Domain knowledge:
* Physics law and our detector are symmetric for spatial rotation along the beam axis.

MMMMMMMMMMMMM

* As well as the data augmentation in an image classification task,
we train the model by randomly rotating the events (4-vector) following the
known symmetry on each epoch
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Result with data augmentation
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Data augmentation is effective
even for physical analysis data
* Increasing effective data size
* reduce over-fitting
* Especially effective for MLP
with the small training data

case
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Summary

* Proper implementation of task structure and domain knowledge as inductive bias is important for
increasing the deep learning model’s performance
* Graph structure often appears in HEP

* Graph network is a deep learning model that handles graphs as input

* Graph network is applied for physics analysis task
e Advantage of Graph network: input variables can be structured, it can handle variable length of
particles, particle ordering is not required

e Graph network outperforms MLP, LSTM, and BDT in our case.

Data augmentation (e.g. increasing data size using spatial invariance of momentum) is also effective

for physics analysis tasks



