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Deep learning applications for particle physics

• High-luminosity LHC starts from 2027, collecting 3000 fb-1 pp collision events with √𝑠 = 14 TeV.

• Need to leverage the quite big data to the fullest extent

• Machine learning would become one of the key techniques to utilize such data in the next 

decade of LHC experiments.

• Machine learning, especially deep learning, is already used in many tasks in collider 

experiments.
• jet tagging, event classification, calorimeter shower simulation, anomaly detection, …
• HEPML-LivingReview: ~ 500 papers

• There are many types of deep learning models and techniques.

https://iml-wg.github.io/HEPML-LivingReview/
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Typical deep learning model

Multi-layer perceptron (MLP)
- Fully Connected (FC), Deep neural network (DNN), Dense, …

input data

𝑝!

𝜂

𝜙

• Most basic and famous deep learning model
• All nodes are connected to all nodes in a next layer
• Strong approximation capability
• Many trainable parameters 

• Good performance even if using low-level inputs

Output
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Typical deep learning model

• Often used in image recognition tasks.
• Convolution with small filters enables to

• be robust for a global shift
• effectively learn the relationships between neighbor 

pixels
• e.g. CNN is used in top-tagging using calorimeter energy 

distributions as images

MLP

Convolutional neural network (CNN)

Input data

Ouptut

Top-tagging
(SciPost Phys, 7, 014 (2019))

https://scipost.org/10.21468/SciPostPhys.7.1.014
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Typical deep learning model

• Used in time series analysis and natural language processing
• By using outputs recurrently, RNN can handle sequential data and variable inputs
• e.g. Tracks in jets, where the number of tracks varies from jet to jet, are processed 

by RNN for b-tagging

…

V1 V2 V3

Recurrent neural network (RNN)
- LSTM, GRU

Output

Input data

RNN b-tagging
(ATL-PHYS-PUB-2017-003)

http://cdsweb.cern.ch/record/2255226
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Typical deep learning model

• tabular data
• All correlation between 

all input variables

• Grid data
• Local correlation
• Same manipulation for 

different positioned data

• Sequential data
• Time correlation
• Same manipulation for different 

time data

Q: What’s types of deep learning model should be used︖
A: A deep learning model should be built considering the structure of the target task 
(domain knowledge, inductive bias)
- resulting in a reduction of model parameters, mitigation of over-fitting

• Data structure used in HEP is often compatible with a graph.

…

Recurrent NN(RNN)Convolutional NN (CNN)Multilayer Perceptron(MLP)



7

2007.13681

Tracking

Calorimeter clustering

Event classification Jet classification

Data structure in HEP

• Representation as a graph has 
advantages for the data satisfied that
• the number of entities varies 
• indexing (ordering) of entities is not 

intrinsic
• relations between entities can be 

defined explicitly.

• Graph Neural Network (GNN) is a deep 
learning model that handles a graph as 
input data

• This talk focuses on the event 
classification using GNN

https://arxiv.org/abs/2007.13681


Problem/Experiments
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Signal: ttH(→bb) Background: ttbb

• Classification problem of signal (𝑡𝑡𝐻(→ 𝑏𝑏)) and background (𝑡𝑡𝑏𝑏)

• Focus on no lepton channel
• 4 bottom-quark + 4 light-quark
• 8 jets are observed

• There are many jets, and it’s hard to reconstruct/identify particle origins. 
This classification is challenging!

Signal and Background
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gluon splitting



Problem/Experiments

• Use simulation dataset

• MadGraph5 + Pythia8 + Delphes

• Emulate a response of ATLAS detector

• Generate 1M events for signal and background

• Training / Validation / Test = 80 % : 10 % : 10 %

Dataset
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Input variables

• Lorentz vector (𝑝$, 𝑝%, 𝑝&, 𝐸) + b-tag label for each jets

• 8 (jets) x 5 (features/jet) = 40 features

Input variables

1st jet

2nd jet

3rd jet

4th jet

signal
Background



• Graph consists of nodes and edges

• Each node and edge has attributes

• Prediction value is calculated by iteratively updating node/edge attributes 

• Update rule is common for all nodes (edges).

Node

Edge

Global

1806.01261Overview of Graph Network
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Graph Node attributes / Edge attributes

https://arxiv.org/abs/1806.01261


Input graphs
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• There are 8 jets and 5 features for each jet, 

which are used as input variables
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• There are 8 jets and 5 features for each jet, 

which are used as input variables

• Each jet is assigned as a node.

• Node attribute: (𝐸, 𝑝$, 𝑝%, 𝑝&, 𝑏-tag) (ℝ')
• Each node connects to all other nodes

(full connection)

• Edge attribute: ℝ(

• represents a relation between two jets
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Input graphs



Update of graph
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• Update edge attributes using neighbor node attributes

• Updated by multilayer perceptron (MLP)
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Update of graph

• Update edge attributes using neighbor node attributes

• Updated by multilayer perceptron (MLP)

• Update all edge attributes using the same MLP



Su
m

m
at

io
n 

of
 n

ei
gh

bo
r 

ed
ge

 a
tt

rib
ut

es

"
#!
#"
##
$%&' (

"
#!
#"
##
$%&' )

Summation of all 
neighbor edge 
attributes

M
LP

(𝑁!"#$%&")*'" )

15

Update of graph

Node update

(5+ 𝑁*+&%,-+
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• Update node attributes using 

neighbor edge attributes

(5 + 5)
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Update of graph

Node update

Summation of all 
neighbor edge 
attributes

• Update node attributes using 

neighbor edge attributes

• Update all node attributes using 

the same MLP
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Update of graph
• Calculate output value using all 

node attributes and MLP
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Update of graph
• Calculate output value using all 

node attributes and MLP

• The last node is used as output 

which is used for the calculation of 

loss function
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(5 + 5)
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Summary of Graph network
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Sum

Three trainable MLP modules

Each MLP structure

• two hidden layer with 256 nodes

• Activation function: ReLU (sigmoid for the last layer)

• Applied Batch normalization for all layers
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• Optimized the size of node/edge attributes and MLP 
layer structure to maximize AUC

• Implemented using graph_nets library that is 
developed by DeepMind

jet2

https://github.com/deepmind/graph_nets
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Reference models

• Compare with three machine learning models
1. Multilayer perceptron (MLP)

• Input: 40 variables in a row
• Optimized the number of hidden layers and the number of nodes.

2. Long short-term memory (LSTM) 
• Input: particles (5 variables, maximum 8 particles) ordering by 

transverse momentum (pT )
• Optimized the number of hidden states

3. Boosted decision tree (BDT)
• Input: 40 variables in a row
• Optimized the depth of tree
• Used XGBoost 

• Hyperparameters of each model is optimized to maximize AUC, then compare the 
performance of the models with the best hyperparameters 

https://github.com/dmlc/xgboost


• Graph Network outperforms MLP, LSTM and 
XGBoost

• Great performance when using the large 

amount of training data

• For the case of using small amount of training 

data, GNN has good performance compared to 

MLP

• The implementation of inductive bias into 

deep learning models reduces redundant 

model parameters, resulting in improved 

performance.

Result

Number of training samples

AU
C

GraphNetwork

XGBoost (BDT)

(max depth = 5)

Multilayer perceptron(MLP)
(N. of hidden layers: 2,
N. of nodes per layer : 64)
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10K 100K 1M

Preliminary

LSTM (RNN)

(N. of hidden states: 64)



Data Augmentation

• Domain knowledge:
• Physics law and our detector are symmetric for spatial rotation along the beam axis.

A human can recognize 
a target even if rotating 
the images

Rotation along the beam axis

pz ó -pz

22

Same probability



Data Augmentation

• As well as the data augmentation in an image classification task,
we train the model by randomly rotating the events (4-vector) following the 
known symmetry on each epoch
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• Domain knowledge:
• Physics law and our detector are symmetric for spatial rotation along the beam axis.

Same probability
Rotation along the beam axis



Result with data augmentation
AU

C

XGBoost (BDT)

(max depth = 5)

• Data augmentation is effective

even for physical analysis data

• Increasing effective data size

• reduce over-fitting

• Especially effective for MLP 

with the small training data 

case

nominal
with data augmentation
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GraphNetwork

10K 100K 1M

Preliminary

LSTM (RNN)

(N. of hidden states: 64)

Multilayer perceptron(MLP)
(N. of hidden layers: 2,
N. of nodes per layer : 64)

Number of training samples



Summary

• Proper implementation of task structure and domain knowledge as inductive bias is important for 

increasing the deep learning model’s performance

• Graph structure often appears in HEP

• Graph network is a deep learning model that handles graphs as input

• Graph network is applied for physics analysis task

• Advantage of Graph network: input variables can be structured, it can handle variable length of 

particles, particle ordering is not required

• Graph network outperforms MLP, LSTM, and BDT in our case.

• Data augmentation (e.g. increasing data size using spatial invariance of momentum) is also effective 

for physics analysis tasks
25


