
Event classification using
Graph Neural Network

ISGC 2021 @ online
26 / 03 / 2021

International Center of Elementary Particle Physics, University of Tokyo
Masahiko Saito, Y. Iiyama. T. Kishimoto, R. Sawada, J. Tanaka, K. Terashi

1

2

Deep learning applications for particle physics

• High-luminosity LHC starts from 2027, collecting 3000 fb-1 pp collision events with √𝑠 = 14 TeV.

• Need to leverage the quite big data to the fullest extent

• Machine learning would become one of the key techniques to utilize such data in the next

decade of LHC experiments.

• Machine learning, especially deep learning, is already used in many tasks in collider

experiments.
• jet tagging, event classification, calorimeter shower simulation, anomaly detection, …
• HEPML-LivingReview: ~ 500 papers

• There are many types of deep learning models and techniques.

https://iml-wg.github.io/HEPML-LivingReview/

3

Typical deep learning model

Multi-layer perceptron (MLP)
- Fully Connected (FC), Deep neural network (DNN), Dense, …

input data

𝑝!

𝜂

𝜙

• Most basic and famous deep learning model
• All nodes are connected to all nodes in a next layer
• Strong approximation capability
• Many trainable parameters

• Good performance even if using low-level inputs

Output

4

Typical deep learning model

• Often used in image recognition tasks.
• Convolution with small filters enables to

• be robust for a global shift
• effectively learn the relationships between neighbor

pixels
• e.g. CNN is used in top-tagging using calorimeter energy

distributions as images

MLP

Convolutional neural network (CNN)

Input data

Ouptut

Top-tagging
(SciPost Phys, 7, 014 (2019))

https://scipost.org/10.21468/SciPostPhys.7.1.014

5

Typical deep learning model

• Used in time series analysis and natural language processing
• By using outputs recurrently, RNN can handle sequential data and variable inputs
• e.g. Tracks in jets, where the number of tracks varies from jet to jet, are processed

by RNN for b-tagging

…

V1 V2 V3

Recurrent neural network (RNN)
- LSTM, GRU

Output

Input data

RNN b-tagging
(ATL-PHYS-PUB-2017-003)

http://cdsweb.cern.ch/record/2255226

6

Typical deep learning model

• tabular data
• All correlation between

all input variables

• Grid data
• Local correlation
• Same manipulation for

different positioned data

• Sequential data
• Time correlation
• Same manipulation for different

time data

Q: What’s types of deep learning model should be used︖
A: A deep learning model should be built considering the structure of the target task
(domain knowledge, inductive bias)
- resulting in a reduction of model parameters, mitigation of over-fitting

• Data structure used in HEP is often compatible with a graph.

…

Recurrent NN(RNN)Convolutional NN (CNN)Multilayer Perceptron(MLP)

7

2007.13681

Tracking

Calorimeter clustering

Event classification Jet classification

Data structure in HEP

• Representation as a graph has
advantages for the data satisfied that
• the number of entities varies
• indexing (ordering) of entities is not

intrinsic
• relations between entities can be

defined explicitly.

• Graph Neural Network (GNN) is a deep
learning model that handles a graph as
input data

• This talk focuses on the event
classification using GNN

https://arxiv.org/abs/2007.13681

Problem/Experiments

h0

b

q

q
b
b

q

q
b

Signal: ttH(→bb) Background: ttbb

• Classification problem of signal (𝑡𝑡𝐻(→ 𝑏𝑏)) and background (𝑡𝑡𝑏𝑏)

• Focus on no lepton channel
• 4 bottom-quark + 4 light-quark
• 8 jets are observed

• There are many jets, and it’s hard to reconstruct/identify particle origins.
This classification is challenging!

Signal and Background

8

q
q
b
b

q
q
b

b

Higgs boson
decays

gluon splitting

Problem/Experiments

• Use simulation dataset

• MadGraph5 + Pythia8 + Delphes

• Emulate a response of ATLAS detector

• Generate 1M events for signal and background

• Training / Validation / Test = 80 % : 10 % : 10 %

Dataset

9

Input variables

• Lorentz vector (𝑝$, 𝑝%, 𝑝&, 𝐸) + b-tag label for each jets

• 8 (jets) x 5 (features/jet) = 40 features

Input variables

1st jet

2nd jet

3rd jet

4th jet

signal
Background

• Graph consists of nodes and edges

• Each node and edge has attributes

• Prediction value is calculated by iteratively updating node/edge attributes

• Update rule is common for all nodes (edges).

Node

Edge

Global

1806.01261Overview of Graph Network

10

Edge

Node

1

2

3

4
D

A
B

C

E

E

D

C

B

A

4

3
2

1

Graph Node attributes / Edge attributes

https://arxiv.org/abs/1806.01261

Input graphs

j1 j2

j8j7j6j5

j4j3

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

h0

b

q

q
b
b

q

q
b

11

• There are 8 jets and 5 features for each jet,

which are used as input variables

j1

j2

j8

j7

j6

j5

j4

j3

• There are 8 jets and 5 features for each jet,

which are used as input variables

• Each jet is assigned as a node.

• Node attribute: (𝐸, 𝑝$, 𝑝%, 𝑝&, 𝑏-tag) (ℝ')
• Each node connects to all other nodes

(full connection)

• Edge attribute: ℝ(

• represents a relation between two jets

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

"
#!
#"
##
$%&'

12

Input graphs

Update of graph

(5 + 5) (𝑁!"#$%&"
"'(")

Node1

Node2

Edge update
"
#!
#"
##
$%&' (

"
#!
#"
##
$%&')

13

• Update edge attributes using neighbor node attributes

• Updated by multilayer perceptron (MLP)

(5 + 5)

Edge update

M
LP

(𝑁!"#$%&"
"'(")

Node1

Node2

"
#!
#"
##
$%&' (

"
#!
#"
##
$%&')

14

Update of graph

• Update edge attributes using neighbor node attributes

• Updated by multilayer perceptron (MLP)

• Update all edge attributes using the same MLP

Su
m

m
at

io
n

of
 n

ei
gh

bo
r

ed
ge

 a
tt

rib
ut

es

"
#!
#"
##
$%&' (

"
#!
#"
##
$%&')

Summation of all
neighbor edge
attributes

M
LP

(𝑁!"#$%&")*'")

15

Update of graph

Node update

(5+ 𝑁*+&%,-+
+.'+)

• Update node attributes using

neighbor edge attributes

(5 + 5)

Edge update

M
LP

(𝑁!"#$%&"
"'(")

Node1

Node2

"
#!
#"
##
$%&' (

"
#!
#"
##
$%&')

(5+ 𝑁*+&%,-+
+.'+)

M
LP

(𝑁!"#$%&")*'")

16

Update of graph

Node update

Summation of all
neighbor edge
attributes

• Update node attributes using

neighbor edge attributes

• Update all node attributes using

the same MLP

(5 + 5)

Edge update

M
LP

(𝑁!"#$%&"
"'(")

Node1

Node2

Su
m

m
at

io
n

of
 n

ei
gh

bo
r

ed
ge

 a
tt

rib
ut

es

(1)

Output (Probability of signal)

M
LP

(𝑁!"#$%&")*'")

17

Update of graph
• Calculate output value using all

node attributes and MLP

(5+ 𝑁*+&%,-+
+.'+)

M
LP

(𝑁!"#$%&")*'")

Node update

Su
m

m
at

io
n

of
 n

ei
gh

bo
r

ed
ge

 a
tt

rib
ut

es

Summation of all
node attributes

(1)

M
LP

(𝑁!"#$%&")*'")

18

Update of graph
• Calculate output value using all

node attributes and MLP

• The last node is used as output

which is used for the calculation of

loss function

(5+ 𝑁*+&%,-+
+.'+)

M
LP

(𝑁!"#$%&")*'")

Node update Output (Probability of signal)

Su
m

m
at

io
n

of
 n

ei
gh

bo
r

ed
ge

 a
tt

rib
ut

es

Summation of all
node attributes

(5 + 5)

jet1

Node to Edge

M
LP

Node to output

(1)

M
LP

Sum

Edge to Node

M
LP

Su
m

 o
f e

dg
e

at
tr

ib
ut

es
N

od
e

at
tr

ib
ut

es

Summary of Graph network

(𝑁!"#$%&"
"'(" =32) (5+ 𝑁!"#$%&"

"'(" =37) (𝑁!"#$%&")*'" =32) (𝑁!"#$%&")*'" =32)

Sum

Three trainable MLP modules

Each MLP structure

• two hidden layer with 256 nodes

• Activation function: ReLU (sigmoid for the last layer)

• Applied Batch normalization for all layers

19

• Optimized the size of node/edge attributes and MLP
layer structure to maximize AUC

• Implemented using graph_nets library that is
developed by DeepMind

jet2

https://github.com/deepmind/graph_nets

20

Reference models

• Compare with three machine learning models
1. Multilayer perceptron (MLP)

• Input: 40 variables in a row
• Optimized the number of hidden layers and the number of nodes.

2. Long short-term memory (LSTM)
• Input: particles (5 variables, maximum 8 particles) ordering by

transverse momentum (pT)
• Optimized the number of hidden states

3. Boosted decision tree (BDT)
• Input: 40 variables in a row
• Optimized the depth of tree
• Used XGBoost

• Hyperparameters of each model is optimized to maximize AUC, then compare the
performance of the models with the best hyperparameters

https://github.com/dmlc/xgboost

• Graph Network outperforms MLP, LSTM and
XGBoost

• Great performance when using the large

amount of training data

• For the case of using small amount of training

data, GNN has good performance compared to

MLP

• The implementation of inductive bias into

deep learning models reduces redundant

model parameters, resulting in improved

performance.

Result

Number of training samples

AU
C

GraphNetwork

XGBoost (BDT)

(max depth = 5)

Multilayer perceptron(MLP)
(N. of hidden layers: 2,
N. of nodes per layer : 64)

21

10K 100K 1M

Preliminary

LSTM (RNN)

(N. of hidden states: 64)

Data Augmentation

• Domain knowledge:
• Physics law and our detector are symmetric for spatial rotation along the beam axis.

A human can recognize
a target even if rotating
the images

Rotation along the beam axis

pz ó -pz

22

Same probability

Data Augmentation

• As well as the data augmentation in an image classification task,
we train the model by randomly rotating the events (4-vector) following the
known symmetry on each epoch

𝐸
𝑃!
𝑃"
𝑃#

→

𝐸
𝑃!cos𝜃 − 𝑃"sin𝜃
𝑃!sin𝜃 + 𝑃"cos𝜃

𝑃#

pz ó -pz

𝐸
𝑃!
𝑃"
𝑃#

→

𝐸
±𝑃!
±𝑃"
±𝑃# 23

• Domain knowledge:
• Physics law and our detector are symmetric for spatial rotation along the beam axis.

Same probability
Rotation along the beam axis

Result with data augmentation
AU

C

XGBoost (BDT)

(max depth = 5)

• Data augmentation is effective

even for physical analysis data

• Increasing effective data size

• reduce over-fitting

• Especially effective for MLP

with the small training data

case

nominal
with data augmentation

24

GraphNetwork

10K 100K 1M

Preliminary

LSTM (RNN)

(N. of hidden states: 64)

Multilayer perceptron(MLP)
(N. of hidden layers: 2,
N. of nodes per layer : 64)

Number of training samples

Summary

• Proper implementation of task structure and domain knowledge as inductive bias is important for

increasing the deep learning model’s performance

• Graph structure often appears in HEP

• Graph network is a deep learning model that handles graphs as input

• Graph network is applied for physics analysis task

• Advantage of Graph network: input variables can be structured, it can handle variable length of

particles, particle ordering is not required

• Graph network outperforms MLP, LSTM, and BDT in our case.

• Data augmentation (e.g. increasing data size using spatial invariance of momentum) is also effective

for physics analysis tasks
25

