
Container Security:
What Could Possibly Go Wrong?

Michaela Doležalová
Daniel Kouřil

Masaryk University, CESNET

What is a container?
● fundamentally, a container is just a running process

● it is isolated from the host and from other containers

● each container usually interacts with its own private filesystem

● there are different containerization technologies available
(Docker, LXD, Podman, Singularity, ...)

● in this tutorial, we will focus mainly on Docker

2

Containers vs. Virtual Machines
● a container is an abstraction of

the application layer
(it runs natively on Linux)

● a virtual machine is an abstraction
of the hardware layer
(it runs a full-blown “guest” operating system)

3

Threat Landscape
● proper deployment and configuration requires understanding the technology

● image management (integrity and authenticity of the image)

● trust in the image maintainer and the repository operator

● malicious images may be found even in an official registry

https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/ 4

Usual Best Practice
● especially proper vulnerability/patch management

● it is often kernel-related and therefore requiring reboot

● updates not always available

● extremely important (couple of vulns over the past few years)

● out of scope for today

Let’s move to Docker itself….

5

Docker Terminology
● Docker container image - a lightweight, standalone, executable package of

software that includes everything needed to run an application
(code, runtime, system tools, system libraries and settings)

● an image is usually pulled from a registry to a host machine
(e.g. DockerHub - something like a Google Play store, Apple store, etc.)

● Docker container - an instance of an image

● a host machine runs the container engine (Docker Daemon)

6

Docker Architecture

7

Docker Container Creation
● the image is opened up and the filesystem of that image is copied into a

temporary archive on the host

● Docker filesystem is a stacked file system of individual layers stacked on “mount”

● the ‘/’ root directory of the container is mounted and available on the host

/var/lib/docker/overlay2/51415bc9cd3ab2c47d218a897516ea2bf0545595fadf4a167ed5cfd3230a5f99/

● changes to the directory are visible from both sides

● when the container is removed, any changes to its state disappear unless
“committed” via dockerd

8

Docker Container Processes
● the container engine manages the process tree natively on the kernel

● to provide application sandboxing, Docker uses Linux namespaces and cgroups

● when you start a container with docker run, Docker creates a set of namespaces
and control groups

9

Namespaces
● Docker Engine uses the following namespaces on Linux

○ PID namespace for process isolation

○ NET namespace for managing/separating network interfaces

○ IPC namespace for separating inter-process communication

○ MNT namespace for managing/separating filesystem mount points

○ UTS namespace for isolating kernel and version identifiers
(mainly to set the hostname and domainname visible to the process)

○ User ID (user) namespace for privilege isolation

● user namespace must be enabled on purpose, it is not used by default
10

PID namespace
● allows to establish separate process trees

● the complete picture still visible from the host (outside the namespace)

11

root# docker run --rm -it debian/ps bash
root@3146c2faec9b:/# dash
ps af

 PID TTY STAT TIME COMMAND
 1 pts/0 Ss 0:00 bash
 6 pts/0 S 0:00 dash
 7 pts/0 R+ 0:00 _ ps af

 1029 ? Ssl 7:48 /usr/bin/containerd
28834 ? Sl 0:00 _ containerd-shim -namespace moby ……...
28851 pts/0 Ss 0:00 _ bash
28899 pts/0 S+ 0:00 _ dash

User ID (user) Namespace
● enables different uid/gid structures visible to the kernel

● mapping between uids in the namespace and “global” uids is needed

● by default, root in the container is root in the host !

12

global (host) id’s
● 0
● 1
● ….
● 1000
● 1001
● …
● 100000
● 100001

id’s in the namespace
● 0
● 1

Cgroups I.
● short for control groups

● they allow Docker Engine to share available system resources

● they implement resource limiting for different resources (CPU, disk I/O, etc.)

● they help to ensure that a single container cannot bring the system down

● cgroups are organized in a (tree) hierarchy for a given cgroup type

13

Cgroups II.
● a process (thread, task) may be assigned one cgroup

○ example of memory control (top level):

○ three children: web browsing (20 %), crypto mining (60 %), others (20 %)

● access via the /sys pseudo-filesystem is the simplest

/sys/fs/cgroup/memory/ (top level)

/sys/fs/cgroup/memory/web (specific cgroup)

14

Linux Kernel Capabilities
● capabilities turn the binary “root/non-root” dichotomy into a fine-grained access

control system

● by default, Docker starts containers with a restricted set of capabilities

● Docker supports the addition and removal of capabilities

● additional capabilities extends the utility but has security implications, too

● a container started with --privileged flag obtains all capabilities

● running without --privileged doesn’t mean the container doesn’t have root
privileges!

15

I am root. Or not?
● multiple levels of root privileges, from an unprivileged root user:

○ if user namespace is enabled, root inside a container has no root privileges
outside in the host system

○ by default, root in a container has some privileges
■ but these are restricted by the default set of capabilities

○ we can explicitly add extra capabilities to our root in a container

○ with the --privileged flag, we have full root rights granted

16

17

Docker Daemon
● running containers (and applications) with Docker implies running the Docker

daemon

● to control it, it requires root privileges, or docker group membership

● only trusted users should be allowed to control your Docker daemon

● it allows you to share a directory between the Docker host and a guest container

● e.g. we can start a container where the /host directory is the / directory on your
host

18

Docker API
● an API for interacting with the Docker daemon

● by default, the Docker daemon listens for Docker API requests at a unix domain
socket created at /var/run/docker.sock

● with -H it is possible to make the Docker daemon listen on a specific IP and port

● you could set it to 0.0.0.0:2375 or a specific host IP to give access to everybody

● Docker API requests go, by default, to the Docker daemon of the host

19

https://docs.docker.com/engine/api/

Docker vs. chroot command
● a container isn’t instantiated by the user but the Docker daemon!

● anyone who’s allowed to communicate with the Docker daemon can manage
containers

● that includes using any configuration parameters

● they can play with binding/mounting files/directories

● or decide which user id will be used in the container
○ including root (unlike eg. chroot) !

20

Escaping
● a very general term

● it does not necessarily mean controlling the host system

● data access (according to the C.I.A triad):

○ reading violating C.

○ modifying violating I.

● executing code outside the container (assigned cgroups and namely namespaces)

21

Escaping from/using Containers
● Methods:

○ Get access off the barriers (e.g. mounting filesystem while making a docker)
○ Inject a “hook” that is invoked by another party in the system

■ crontab rule, a kernel “notifier” running command on certain events
● must run outside the container - APIs (e.g. inotify) won’t help

22

Examples of Docker-related incidents
● unprotected access to Docker daemon over the Internet

○ revealed by common Internet scans

○ instantiation of malicious containers used for dDoS activities

● stolen credentials providing access to the Docker daemon
○ used to deploy a container set up in a way allowing breaking the isolation

○ the attackers escaped to the host system

○ an deployed crypto-mining software and misused the resources

23

Other kernel security features
● it is possible to enhance Docker security with systems like TOMOYO, AppArmor,

SELinux, etc.

● you can also run the kernel with GRSEC and PAX

● all these extra security features require extra effort

● some of them are only for containers and not for the Docker daemon

● as of Docker 1.10 User Namespaces are supported directly by the Docker daemon

24

Cheat Sheets

Docker Cheat Sheet I.
start a new container from an image
docker run IMAGE

start a new container from an image with a command
docker run IMAGE command

start a new container in background
docker run -d IMAGE

start a new container and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE

26

Docker Cheat Sheet II.
show a list of running containers stop a running container
docker ps docker stop CONTAINER

show a list of all containers start a stopped container
docker ps -a docker start CONTAINER

delete a container download an image
docker rm CONTAINER docker pull IMAGE

start a shell inside a running container
docker exec -it CONTAINER EXECUTABLE

27

Practical Part

Cyber Range KYPO
● platform to organize and control cyber exercise, mostly CTF-like events

● set of services on the top of OpenStack cloud, providing separated sandboxes
○ machines are instantiated as VMs, connected using isolated network

● web portal mediating access to the environment and guiding participants
through levels

○ description, tasks, hints
○ levels are linked using flags

● scoreboard and monitoring of progress for organizers

● platform is open-source, actively maintained by Masaryk University
○ https://kypo.muni.cz/

29

https://kypo.muni.cz/

How To Get Started
● “book” your account at

○ https://docs.google.com/spreadsheets/d/1gs2DPeYRO1gAdQS78D721GX5BAIrlG_WUKciKT1ua6Y/

● log in portal https://isgc.crp.kypo.muni.cz using the booked credentials
○ you will start off the intro page
○ 16 “levels” in total (inc. intro etc.), each level contains

■ description
■ hints
■ specification of the flag

○ once you determine the flag, submit it to get to the next level

● interaction with VMs via either
○ embedded console (see the topology, click the “main” node (right mouse

button) and open the console
○ directly using SSH (but ignore the “Get SSH Access”)

30

https://docs.google.com/spreadsheets/d/1gs2DPeYRO1gAdQS78D721GX5BAIrlG_WUKciKT1ua6Y/
https://isgc.crp.kypo.muni.cz

Topology

31

training@main$

 Task 0 & Task A

 ssh -p XXX root@IP

Task B Task C

SSH via Internet

Browser console

OR

Thank you for your attention.

Please be so kind and fill in our short questionnaire:

https://forms.gle/7kpR5gdE3L3bom8m6

https://forms.gle/7kpR5gdE3L3bom8m6

