Container Security:
What Could Possibly Go Wrong?

Michaela Dolezalova

Daniel Kouril
Masaryk University, CESNET

What is a container?

fundamentally, a container is just a running process
it is isolated from the host and from other containers
each container usually interacts with its own private filesystem

there are different containerization technologies available
(Docker, LXD, Podman, Singularity, ...)

in this tutorial, we will focus mainly on Docker

Containers vs. Virtual Machines

a container is an abstraction of

the application layer
(it runs natively on Linux)

CONTAINER

App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Docker

Host OS

Infrastructure

a virtual machine is an abstraction

of the hardware layer

(it runs a full-blown “guest” operating system)

VM
App A App B
Bins/Libs Bins/Libs

Guest OS Guest OS

Hypervisor

Infrastructure

App C

Bins/Libs

Guest OS

Threat Landscape

proper deployment and configuration requires understanding the technology
image management (integrity and authenticity of the image)

trust in the image maintainer and the repository operator

malicious images may be found even in an official registry

Attackers Cryptojacking Docker Images to Mine
for Monero

28,422 people reacted

https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/

Usual Best Practice

especially proper vulnerability/patch management

it is often kernel-related and therefore requiring reboot
updates not always available

extremely important (couple of vulns over the past few years)

out of scope for today

Let’'s move to Docker itself....

Docker Terminology

Docker container image - a lightweight, standalone, executable package of

software that includes everything needed to run an application
(code, runtime, system tools, system libraries and settings)

an image is usually pulled from a registry to a host machine
(e.g. DockerHub - something like a Google Play store, Apple store, etc.)

Docker container - an instance of an image

a host machine runs the container engine (Docker Daemon)

Docker Architecture

Client) DOCKER_HOST} @—*
docker build -- ,,)l l):ckerdaemon S | R
A / .\ -._'. = o . Qﬁl;-\;)
docker pull -| |/ , \ S
i Contamers}— 3 @—:—
docker run -7 N e NGinX

0ouy

Docker Container Creation

the image is opened up and the filesystem of that image is copied into a
temporary archive on the host

Docker filesystem is a stacked file system of individual layers stacked on “mount”

the /' root directory of the container is mounted and available on the host
/var/lib/docker/overlay2/51415bc9cd3ab2c47d218a897516ea2bf0545595fadf4a167ed5cfd3230a5f99/

changes to the directory are visible from both sides

when the container is removed, any changes to its state disappear unless
“committed” via dockerd

Docker Container Processes

the container engine manages the process tree natively on the kernel
to provide application sandboxing, Docker uses Linux namespaces and cgroups

when you start a container with docker run, Docker creates a set of namespaces
and control groups

Namespaces

e Docker Engine uses the following namespaces on Linux
o PID namespace for process isolation
o NET namespace for managing/separating network interfaces
o IPC namespace for separating inter-process communication
o MNT namespace for managing/separating filesystem mount points

o UTS namespace for isolating kernel and version identifiers

(mainly to set the hostname and domainname visible to the process)

o User ID (user) namespace for privilege isolation

e user namespace must be enabled on purpose, it is not used by default

10
s

PID namespace

allows to establish separate process trees

the complete picture still visible from the host (outside the namespace)

1029 ?
28834 ?
28851 pts/0

2889%6/0

Ssl
Sl

Ss
S+

7:48
0:00
0:00
0:00

/usr/bin/containerd

_ containerd-shim -namespace moby

_bash
_dash
ps af
PID TTY
— 1 pts/0
6 pts/0
7 pts/O

root# docker run --rm -it debian/ps bash
root@3146c2faec9b:/# dash

STAT TIME COMMAND
Ss 0:00 bash

S 0:00 dash

R+ 0:00 _psaf

11

User ID (user) Namespace

® ecnables different uid/gid structures visible to the kernel
® mapping between uids in the namespace and “global” uids is needed
® by default, root in the container is root in the host !

global (host) id’s

o O

o 1 id's in the namespace
o .. e 0

e 1000 o 1

e 1001

®

e 100000

e 100001

12

Cgroups I.

short for control groups

they allow Docker Engine to share available system resources

they implement resource limiting for different resources (CPU, disk I/0O, etc.)
they help to ensure that a single container cannot bring the system down

cgroups are organized in a (tree) hierarchy for a given cgroup type

13

Cgroups .

a process (thread, task) may be assigned one cgroup
o example of memory control (top level):
o three children: web browsing (20 %), crypto mining (60 %), others (20 %)
access via the /sys pseudo-filesystem is the simplest
/sys/fs/cgroup/memory/ (top level)

/sys/fs/cgroup/memory/web (specific cgroup)

14

Linux Kernel Capabilities

capabilities turn the binary “root/non-root” dichotomy into a fine-grained access
control system

by default, Docker starts containers with a restricted set of capabilities

Docker supports the addition and removal of capabilities
additional capabilities extends the utility but has security implications, too
a container started with --privileged flag obtains all capabilities

running without --privileged doesn't mean the container doesn’t have root
privileges!

15

| am root. Or not?

multiple levels of root privileges, from an unprivileged root user:

o if user namespace is enabled, root inside a container has no root privileges
outside in the host system

o by default, root in a container has some privileges
m but these are restricted by the default set of capabilities

o we can explicitly add extra capabilities to our root in a container

o with the --privileged flag, we have full root rights granted

16

B root @53
root# docker run --rm -it debian/ip bash
root@b523a39fcc48: /# iptables -L -n

iptables: Permission denied (you must be root).
root@b523a39fcc48: /# |}

root | = B &3
root# docker run --rm -it --cap-add=NET_ADMIN debian/ip bash

root@361c51aal11bo: /# iptables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
root@361c51aa11bo: /# |

17

Docker Daemon

running containers (and applications) with Docker implies running the Docker
daemon

to control it, it requires root privileges, or docker group membership
only trusted users should be allowed to control your Docker daemon
it allows you to share a directory between the Docker host and a guest container

e.g. we can start a container where the /host directory is the / directory on your
host

18

Docker API

an API for interacting with the Docker daemon

by default, the Docker daemon listens for Docker APl requests at a unix domain
socket created at /var/run/docker.sock

with -H it is possible to make the Docker daemon listen on a specific IP and port
you could set it to 0.0.0.0:2375 or a specific host IP to give access to everybody

Docker APl requests go, by default, to the Docker daemon of the host

19

https://docs.docker.com/engine/api/

Docker vs. chroot command

a container isn’t instantiated by the user but the Docker daemon!

anyone who's allowed to communicate with the Docker daemon can manage
containers

that includes using any configuration parameters
they can play with binding/mounting files/directories

or decide which user id will be used in the container

o including root (unlike eg. chroot) !

20

Escaping

a very general term

Availability

it does not necessarily mean controlling the host system
data access (according to the C.I.A triad):

O reading violating C.

o modifying violating I.

executing code outside the container (assigned cgroups and namely namespaces)

21

Escaping from/using Containers

Methods:
o Get access off the barriers (e.g. mounting filesystem while making a docker)
o Inject a “hook” that is invoked by another party in the system
m crontab rule, a kernel “notifier” running command on certain events
e must run outside the container - APIs (e.g. inotify) won't help

22

Examples of Docker-related incidents

unprotected access to Docker daemon over the Internet
o revealed by common Internet scans

o instantiation of malicious containers used for dDoS activities

stolen credentials providing access to the Docker daemon
o used to deploy a container set up in a way allowing breaking the isolation
o the attackers escaped to the host system
o andeployed crypto-mining software and misused the resources

23

Other kernel security features

it is possible to enhance Docker security with systems like TOMOYO, AppArmor,
SELinux, etc.

you can also run the kernel with GRSEC and PAX
all these extra security features require extra effort
some of them are only for containers and not for the Docker daemon

as of Docker 1.10 User Namespaces are supported directly by the Docker daemon

24

Cheat Sheets

Docker Cheat Sheet I.

start a new container from an image
docker run IMAGE

start a new container from an image with a command
docker run IMAGE command

start a new container in background
docker run -d IMAGE

start a new container and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE

26

Docker Cheat Sheet II.

show a list of running containers stop a running container
docker ps docker stop CONTAINER
show a list of all containers start a stopped container
docker ps -a docker start CONTAINER
delete a container download an image
docker rm CONTAINER docker pull IMAGE

start a shell inside a running container
docker exec -it CONTAINER EXECUTABLE

27

Practical Part

Cyber Range KYPO

platform to organize and control cyber exercise, mostly CTF-like events

set of services on the top of OpenStack cloud, providing separated sandboxes
o machines are instantiated as VMs, connected using isolated network
web portal mediating access to the environment and guiding participants

through levels
o description, tasks, hints
o levels are linked using flags

scoreboard and monitoring of progress for organizers

platform is open-source, actively maintained by Masaryk University
o https://kypo.muni.cz/

29

https://kypo.muni.cz/

How To Get Started

e “book”your account at
O https://docs.google.com/spreadsheets/d/1gs2DPeYRO1gAdQS78D721GX5BAIrIG WUKciKT1uabY/

e |ogin portal https:/isgc.crp.kypo.muni.cz using the booked credentials
o you will start off the intro page

o 16 "“levels” in total (inc. intro etc.), each level contains
m description
m hints
m specification of the flag

o once you determine the flag, submit it to get to the next level

e interaction with VMs via either

o embedded console (see the topology, click the “main” node (right mouse
button) and open the console

o directly using SSH (but ignore the “Get SSH Access")
30
s

https://docs.google.com/spreadsheets/d/1gs2DPeYRO1gAdQS78D721GX5BAIrlG_WUKciKT1ua6Y/
https://isgc.crp.kypo.muni.cz

Topology

(;gaining@main$

Task 0 & Task A

ssh -p XXX root@IP

=

Task B

\

SSH via Internet

OR

J

T

Task C

Browser console

31

Thank you for your attention.

Please be so kind and fill in our short questionnaire:

https.//forms.gle/7kpR5gdE3L3bom8m6

https://forms.gle/7kpR5gdE3L3bom8m6

