
D. Bonacorsi1

Prof. Daniele Bonacorsi

Machine Learning workshop

ISGC 2021

March 22, 2021

Logistics

2

Plan of the day
The day is dedicated to beginner/intermediate-level ML users.

09:00 - 10:30 Basic ML concepts and tools + start with Labs

10:30 - 11:00 — break —

11:00 - 12:30 Lab on Regression

12:30 - 13:30 — lunch break —

13:30 - 15:00 Lab on Classification + Lab on CNN

15:30 - 15:30 — break —

15:30 - 17:00 Lab on AE + Lab on GAN

All through slides + example application with code

• follow at your pace (i.e. code in real time, or just follow and exercise later)

❖ you only need a browser and a network connection

• all slides and code is available for you (see next)

D. Bonacorsi 3

Material

< a link to the material will appear here (during the workshop)>

D. Bonacorsi 4

Time to code!LOOK FOR THIS ARROW IN THE SLIDES
(this means there is code for you to play with the concepts!)

Definition of ML

5

Textual definition(s) of ML

D. Bonacorsi6

“The capacity of a computer to learn from experience, i.e. to modify its processing
on the basis of newly acquired information”

– The Oxford dictionary of statistics terms (today)

D. Bonacorsi7

“The capacity of a computer to learn from experience, i.e. to modify its processing
on the basis of newly acquired information”

– The Oxford dictionary of statistics terms (today)

“ML is the field of study that gives computers the ability to learn without being
explicitly programmed”

– Arthur Samuel (1959), author of the Samuel Checkers-playing Program (and some TeX..)

Textual definition(s) of ML

D. Bonacorsi8

“The capacity of a computer to learn from experience, i.e. to modify its processing
on the basis of newly acquired information”

– The Oxford dictionary of statistics terms (today)

“ML is the field of study that gives computers the ability to learn without being
explicitly programmed”

– Arthur Samuel (1959), author of the Samuel Checkers-playing Program (and some TeX..)

“A machine is said to learn from experience E with respect to some class of tasks T
and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E.”

– Tom Mitchell (1997)

Textual definition(s) of ML

A pictorial definition (by Nvidia)

D. Bonacorsi 9
[NVI1]

Visual definition of ML

D. Bonacorsi 10
[NVI1]

A pictorial definition (by Nvidia)

Visual definition of ML

D. Bonacorsi 11
[NVI1]

A pictorial definition (by Nvidia)

Visual definition of ML

D. Bonacorsi 12
[NVI1]

A pictorial definition (by Nvidia)

Visual definition of ML

“AI”, really?

D. Bonacorsi 13

Artificial Intelligence ?

“AI” terminology perhaps misleading in most practical discussions

Most of AI research today is actually not trying to recreate
intelligence in any shape or form, at all

“AI”, really?

D. Bonacorsi 14

Artificial Intelligence
Automation of task

execution and (eventually)
decision making

“AI” terminology perhaps misleading in most practical discussions

Most of AI research today is actually not trying to recreate
intelligence in any shape or form, at all

“AI”, really?

“AI” terminology perhaps misleading in most practical discussions

Most of AI research today is actually not trying to recreate
intelligence in any shape or form, at all

It is aiming at collecting data around how humans make decisions,
to perform the same tasks at a scale (LARGE) and latency (SMALL)
that are not humanly possible

• Example: facial recognition.

This is the “artificial intelligence” we are talking about. And a way to
implement it is via Machine Learning techniques.

D. Bonacorsi 15

Artificial Intelligence
Automation of task

execution and (eventually)
decision making

Why AI now, and not decades ago?

D. Bonacorsi 16

D. Bonacorsi 17

Why AI now, and not decades ago?

Why AI now, and not decades ago?

A revive and acceleration happened recently, mainly because of
factors that I would list as:

• the raise of Big Data

• the technology progresses (e.g. GPUs)

• “Democratisation” [*] of massive computing resources via Cloud approaches

Today, it is a fact that ML/DL are among the core transformative
technologies at the basis of most world-wide activities aiming at
extracting actionable insight from (big) data.

D. Bonacorsi 18

[*] as most of these resources world-wide are far from being free-of-charge,
and Big Data companies implement carefully designed business models,

this is debatably “democratic” in a social sense. Not discussed here further,
though: here we aim at stating that “in principle” you have a “pay-and-
access” option on not-on-premise resources, which did not exist before.

D. Bonacorsi19

“Classical programming uses rules and data to produce answers.
Machine Learning uses data and answers to produce rules.”

– F. Chollet (author of Keras)

Another (last definition)

Traditional approach

D. Bonacorsi20

D. Bonacorsi21

ML approach: data-driven modelling

D. Bonacorsi22

ML approach: Big Data-driven modelling

“Big Data” definition
includes Volume, but also

Variety, Velocity, Veracity, etc

Types of ML

23

Types of ML

There are different types of ML, in terms of “learning algorithms”.

The 3 most populated categories are:

• supervised learning

• unsupervised learning

• reinforcement learning

D. Bonacorsi24

A traditional,

lightweight classification

Types of ML

There are different types of ML, in terms of “learning algorithms”.

The 3 most populated categories are:

• supervised learning: teach the machine how to learn something from data

• unsupervised learning

• reinforcement learning

D. Bonacorsi25

A traditional,

lightweight classification

Types of ML

There are different types of ML, in terms of “learning algorithms”.

The 3 most populated categories are:

• supervised learning: teach the machine how to learn something from data

• unsupervised learning: let the machine learn by itself how to learn from data

• reinforcement learning

D. Bonacorsi26

A traditional,

lightweight classification

Types of ML

There are different types of ML, in terms of “learning algorithms”.

The 3 most populated categories are:

• supervised learning: teach the machine how to learn something from data

• unsupervised learning: let the machine learn by itself how to learn from data

• reinforcement learning: make the machine learn by feedback

D. Bonacorsi27

A traditional,

lightweight classification

Possible classifications of ML methods
Classify ML in broad categories based on:

• the amount and type of supervision during model creation (aka “training”):

❖ Supervised, Unsupervised, (Semisupervised), Reinforcement Learning

• whether or not they can learn incrementally on the fly

❖ online learning versus batch learning

• whether they work by simply comparing new data points to known data
points, or instead detect patterns in the training data and build a predictive
model (much like scientists do)

❖ instance-based versus model-based learning

These criteria are not exclusive; you can combine them in any way

• e.g. a state-of-the-art spam filter may learn on the fly using a deep neural
network model trained using examples of spam and good mails, which makes it
an online, model-based, supervised learning system

Let’s look at key concepts of each.
D. Bonacorsi28

We need to classify problems and methods, select, and choose..

• Alternative: get into each ML algorithm! (impossible in one day!)

D. Bonacorsi29

The algorithms zoo

Supervised, Unsupervised, Reinforcement Learning

Batch learning versus Online learning

Instance-based versus Model-based learning

30

31

Supervised ML Unsupervised ML Reinforcement Learning

In supervised learning, the data entries (“instances” or
“examples”) you feed to the algo for it to learn (through its
“attributes” - instantiated in“features” - in a process called
“training”) includes the truth info, i.e. the so-called “labels”

• e.g. for a spam detection problem:

Another (one of my favourite) example is a child learning to recognise
car vs bus vs bicycle in traffic with a parent guiding her/him

32

Supervised ML: Classification vs Regression

A typical supervised learning task is classification

• predict “classes”: binary (0/1, yes/no) or multi-class (A/B/C/D)

• e.g. spam filter: trained with many example emails along with their class labels
(“spam” or “not-spam”), it learns how to classify new coming emails

Another typical supervised learning task is regression

• predict “target numeric values” (in a continuum of values)

• e.g. a price of a house, knowing its attributes, and being given plenty of
instances of other houses (both their features and price)

Note: regression algorithms exist that can be used for classification
as well, and vice versa

• e.g. Logistic Regression is commonly used for classification, as it can output a
value that corresponds to the probability of belonging to a given class (e.g.,
20% chance of being spam)

D. Bonacorsi33

Supervised ML algos

Most commonly used / important:

• Linear Regression

• Logistic Regression

• Support Vector Machines (SVMs)

• k-Nearest Neighbours

• Decision Trees and Random Forests

• Neural Networks

❖ NOTE: some neural network architectures can be unsupervised, such as AutoEncoders and
restricted Boltzmann machines. They can also be semisupervised, such as in deep belief networks
and unsupervised pretraining… devil is in the details!

• …

D. Bonacorsi34

Example of “unsupervised ML”: clustering

35

Supervised ML Unsupervised ML Reinforcement Learning

In unsupervised learning the training data is unlabeled, so the system tries to
learn without a teacher guiding it

Example: data about blog readers

• run an unsupervised (e.g. clustering) algo to detect “groups of similar visitors”

• at no point you tell the algo which group a visitor belongs to

• but it finds it out: e.g., it might detect that 30% are females who comment on your posts
on topic X, and usually read the blog in the evening, etc.

• with unsupervised (hierarchical clustering) algos, you may detect subgroups, etc

36

Other examples of unsupervised ML

Example: used to organise large computer clusters, trying to
figure out which machines tend to “work together”: if set-up takes
this into account, the data centre works more efficiently.

Example: social network clustering. Given knowledge about which
friends you message the most, or given your <pick-your-social>
connections, try to automatically identify which are cohesive groups
of people who know each other (or may want to connect).

Example: Market segmentation. Analyse huge DBs of customers’
info and try to automatically group customers into different market
segments, to target advertisement, offers, etc.

Example: e.g. Physics/Astronomy data analysis. Clustering algos
might give insight into possible logical grouping of previously
disconnected data.

D. Bonacorsi 37

38

Unsupervised ML for medical diagnosis

Unsupervised ML: visualisation
Data visualisation is also a customer of unsupervised learning algos

• feed visualisation algos with a lot of complex and unlabeled data, and they
output a 2D or 3D representation of your data that can easily be plotted

D. Bonacorsi39

Example of a t-SNE visualization
highlighting semantic clusters

Unsupervised ML algos
Most commonly used / important:

Clustering → try to detect groups

• K-Means

• DBSCAN

• Hierarchical Cluster Analysis (HCA)

• Anomaly detection and novelty detection

• One-class SVM

• Isolation Forest

Visualisation and Dimensionality Reduction → display / simplify data w/o losing too much info

• Principal Component Analysis (PCA)

• Kernel PCA

• Locally-Linear Embedding (LLE)

• t-distributed Stochastic Neighbour Embedding (t-SNE)

Association rule learning → discover interesting relations between attributes in large datasets
• Apriori

• Eclat

D. Bonacorsi40

41

Example of Reinforcement Learning

Supervised ML Unsupervised ML Reinforcement Learning

Reinforcement Learning (RL)

Reinforcement Learning is a completely different beast

• The learning system is called  
“agent” in this context

• it observes the environment

• select and perform actions

• get positive rewards or negative  
rewards (i.e. penalties) in return

• learning step is define the best  
policy to get the most reward  
over time

Examples:

• robots implement RL to teach themselves learn how to walk

• DeepMind’s AlphaGo program beat Ke Jie at the game of Go (May 2017)

D. Bonacorsi42

43

Supervised, Unsupervised, Reinforcement Learning

Batch learning versus Online learning

Instance-based versus Model-based learning

44

Batch learning vs Online learning

Classification of ML algos based on whether or not the system can
learn incrementally from a stream of incoming data

D. Bonacorsi45

In batch learning, the system is incapable of learning incrementally

• it must be trained using all the available data (i.e. offline learning, in contrast
with “online”)

• more data? stop, re-train (on old+new data), create new model, refine it, switch
to it and abandon the old one, launch the new in production

❖ “new data weekly” mode vs “rapidly changing data” (e.g. aiming to predict stock markets?)

• it can be resource hungry (i.e. time and computing)

❖ CPU, memory space, disk space, disk I/O, network I/O, etc.

When do you hit an unsurmountable limit with batch learning?

• Big (Volume-wise) data + automation requirements → requires plenty of money!

• same as above + limited resources (e.g. smartphone app, or rover on Mars..) →
might be even impossible!

Solutions here might come from using different algos, that are capable
of learning incrementally..

D. Bonacorsi46

Batch learning

Online learning
In online learning, you train the system incrementally

• by feeding it data instances sequentially

❖ either individually or by small groups  
called “mini-batches”

• each learning step is fast and cheap,  
so the system can learn about new data  
on the fly, as it arrives

Points of strength:

• perfect for systems that receive data as a continuous flow
❖ and need to adapt to change rapidly or autonomously

• good option if you have limited computing resources
❖ once an online learning system has learned about new data instances, you can discard them

❖ Good choice to train systems on huge datasets that cannot fit in one machine’s main memory (aka
“out-of-core learning”): the algo loads part of the data, runs a training step on that data, and repeats
the process until it has run on all of the data

D. Bonacorsi47

Supervised, Unsupervised, Reinforcement Learning

Batch learning versus Online learning

Instance-based versus Model-based learning

48

Instance-based vs Model-based Learning

Classification of ML algos based on how they generalise.

Note that “generalisation” is key to success of a ML system

• data → training → ability to make predictions on previously unseen data

• key of applied ML (and all its art!) is to perform well on new instances!

The 2 main approaches to generalisation are:

• Instance-based Learning

• Model-based Learning

D. Bonacorsi49

Instance-based Learning
The most trivial form of learning is simply to learn by similarity

• with [A,B] as options, classify an instance as [A] if that instance is similar to a
previous one in the training sample that had an [A] label

• of course, this requires a “measure of similarity” between instances

This is instance-based learning: the system learns, then generalises
to new cases by comparing them to the learned examples (or a
subset of them), using a similarity measure.

D. Bonacorsi50

The new instance will be
classified as a triangle because
most of most similar (close-by
in the features space) training
instances belong to that class

Model-based Learning

In model-based learning, instead, a “model” for the training
examples is built, then it is used to make predictions

• a completely different way to generalise from a set of examples

You rely on a model selection, i.e. you reason on your data and
make an hypothesis as of how each data features contribute to its
label, and apply such model to make predictions

D. Bonacorsi51

The new instance will be
classified as a triangle because a
model exists that explain why

triangles do populate that
portion of the features space

Challenges in ML

52

Main challenges in ML

Basically, related to:

• bad data

• bad algos

• training technicalities

D. Bonacorsi53

Main challenges in ML

Basically, related to:

• bad data

• bad algos

• training technicalities

D. Bonacorsi54

Example: how does a baby learn to spot car vs bus vs motorbikes?

• try, dad gives labels, try, dad corrects, try, try, try, …

• you need traffic! quite examples, i.e. many cars, busses, motorbikes..

ML is like a baby learning as above, but way more stupid!

• well.. it can do in seconds what a baby takes months to learn..

• .. but needs PLENTY of examples to learn and perform in even simpler tasks

❖ (and at the same time the baby has learnt a lot of other things, btw)

Needs for large volumes of data (the Volume “V” of Big Data..) is a
NEED for well performing Machine/Deep Learning applications

D. Bonacorsi55

Main challenges in ML: Insufficient Quantity of Training Data
Bad data

Caution: not talking about the quality of the data (that comes later)..

.. but about their representativeness of the problem such data is
expected to describe

• e.g. are they complete? Example: YouTube search engine favours popularity..

Crucial to use a training set that is representative of the problem
you want to describe and eventually generalise to

• if the sample is too small → “sampling noise” (i.e. non-representative data as
a result of chance). Even if the sample is very large, if the sampling method is
flawed it will still be non-representative. This is called “sampling bias”

D. Bonacorsi56

Main challenges in ML: Non-representative Training Data
Bad data

ML systems are“garbage in garbage out”

If your training data is full of errors, outliers,
noise (e.g. due to poor-quality
measurements), the system will find it hard
to detect any underlying patterns, so less
likely to achieve decent performances

It is worth the effort to spend time
cleaning up your training data. Best data
science teams spend here a significant
portion of their overall time on a ML project.

E.g. some instances missing a few features

• ignore the attribute altogether

• ignore the instances

• fill in the missing features (e.g. median): bias?

• train one model with the attribute and one
model without it

D. Bonacorsi57

Main challenges in ML: Poor-Quality Data
Bad data

[credits: xkcd.com]

Again, ML systems are“garbage in garbage out”. But here, focus is
on features and the learning process itself

Success in a ML project largely depends on your ability to feed a
training process with features in your data that enable an effective
learning process

• please “help the ML system to help you”! ⓒ

This process is important mainly in non-NN ML models, and it
includes the so-called “feature engineering“ at large, involving:

• feature selection: among existing and already collected features, select the
most useful features to train on

• feature extraction: combining existing features to produce a (unreal?) more
useful one (dimensionality reduction algos can help here)

• creating and adding new features by gathering new data

D. Bonacorsi58

Main challenges in ML: Irrelevant Features
Bad data

Main challenges in ML

Basically, related to:

• bad data

• bad algos

• training technicalities

D. Bonacorsi59

Overfitting means that a model performs well on the training data,
but it does not generalise well to new, previously unseen data.

• The more complex a model is (DNN, or just high-degrees polynomials) the
more it is able to detect and describe subtle patterns in the training data. But
if the training set is noisy, or if it is too small (i.e. sampling noise), then the
model is likely to detect patterns in the noise itself.

The cures include: reducing the nb attributes, apply
regularization, collect more training data (in some cases..)

D. Bonacorsi60

Main challenges in ML: Overfitting the Training Data
Bad algos

Underfitting (the opposite of overfitting) occurs when your model is
too simple to learn the underlying structure of your training data

The main options to cure this are:

• selecting a more powerful model, with more parameters

• feature engineering: feeding better features to the learning algo

• reducing the constraints on the model (e.g. reducing the regularization
hyperparameter)

❖ careful, as this may open doors to overfitting..

D. Bonacorsi61

Main challenges in ML: Underfitting the Training Data
Bad algos

Main challenges in ML

Basically, related to:

• bad data

• bad algos

• training technicalities

D. Bonacorsi62

Training and Testing a model

The only way to know how well a model will generalise to new cases
is to actually try it out on new data.

Basic choice is to split your data into two sets: the training set and
the test set

• train your model using the training set, and test it using the test set

❖ the error rate you will experience on new cases will be called “generalisation error”

❖ You can estimate this by evaluating your model on the test set

❖ This value tells you how well your model will perform on instances it has never seen before

• If the generalisation error is high, it means that your model is overfitting the
training data

More refined options do exist..

D. Bonacorsi63

Training technicalities

Model selection and Hyper-parameter tuning
You are hesitating between 2 ML models..

• train both and compare how well they generalise using the test set

Ok, this helped to pick one. Now, to fight overfitting, you apply regularisation.
Which 𝜆 (regularization parameter) do you choose?

• you train 100 models with 100 values of 𝜆, you find the 𝜆 that produces a model with the
lowest generalisation error (e.g. 5%), and then you pick your model. You launch this to
production and measure a 15% error. What?!

❖ The problem is that you measured the generalization error multiple times on the test set, and you adapted the
model and hyperparameters to produce the best model for that particular set. So presumably it will not perform
well on new data

Solution: “holdout validation”, with a validation set

• you train multiple models with various hyperparameters on the “reduced” training set (i.e.
the full training set minus the validation set), and you select the model that performs best
on the validation set.

• Then, the holdout validation process is over, you re-train the best model on the full
training set (including the validation set), and this gives you the final model

• Lastly, you evaluate this final model on the test set to get an estimate of the generalisation
error.

D. Bonacorsi64

Training technicalities

Cross-validation
The aforementioned solution usually works quite well. However:

• if the validation set is too small, then model evaluations will be imprecise: you
may end up selecting a suboptimal model by mistake

• if the validation set is too large, then the remaining training set will be much
smaller than the full training set. This is bad because the final model will be
trained on the full training set, it is not ideal to compare candidate models
trained on a much smaller training set.

❖ it is like selecting the best marathon runner from his performance on the first 500 m …

One way to solve this problem is to perform repeated cross-
validation, using many small validation sets.

• Each model is evaluated once per validation set, after it is trained on the rest
of the data. By averaging out all the evaluations of a model, we get a much
more accurate measure of its performance.

• However, there is a drawback: the training time is multiplied by the number of
validation sets: it increases the requirements on computing resources!

D. Bonacorsi65

Training technicalities

Tools and Frameworks in ML
(and which general Python library and tools we will use today)

66

Jupyter

67

Jupyter notebooks

An open-source web application that allows to create and share
code, plots, documents.

It offers one single environment for:

• code, comments on the code, data analysis + data visualisation

• as well as any additional context (e.g. text, formulas, even media files..)

Perfect for streamlining an entire workflow.

And excellent in the prototyping phase.
68D. Bonacorsi

https://jupyter.org/

Google Colab

69

70

Google Colab(oratory)

D. Bonacorsi

(allow me oversimplifications here..)

In a nutshell: Jupyter notebooks on the cloud.

https://colab.research.google.com/

Keyboard shortcuts:
Google Colab vs Jupyter

Proper way to get started: remember you are on the cloud!
• create a new Python notebook

❖ or open an existing notebook from gdrive, github, etc.. or upload your ipynb from your laptop

• Save a copy on your own gdrive, and code from that one

❖ all future changes will be saved

71

How to get started on Colab

D. Bonacorsi

Colab: select your Runtime
Once you open a Colab notebook, 
you get a Colab Runtime

• this is the free Google VM  
dedicated to you for a while

By default, the initial Runtime is CPU-only

• but you can change this:

72D. Bonacorsi

① ②

③

select GPU here

colab VM states are:
Connecting,
Allocating,

Initialising, and its
actual RAM/Disk
monitoring widget

④

(NOTE: yes, also TPUs are available..)

GPUCPU

Colab Runtimes

73D. Bonacorsi

As from the Colab FAQs:

• “Colaboratory is intended for interactive use. Long-running background
computations, particularly on GPUs, may be stopped. Please do not use
Colaboratory for cryptocurrency mining.”

The web interface will automatically disconnect you from the Colab
Runtime after ~30 minutes of unattended connection

• you can have it again, but when you reconnect to the Colab Runtime, it may
have been reset (so make sure you download what you needed before moving
to something else)

Even if you stay connected and actually code, the Colab Runtime
will automatically shut down after 12 hours

• this is meant to prevent long-running computations

Still a neat tool for experimenting on GPUs (and for free)..

74

Lifetime of a Colab Runtime

D. Bonacorsi

D. Bonacorsi 75AML - AA 2019/20

Which GPU am I getting in Colab?

Tesla K80, 12 GB RAM,  
up to 12 hrs in a row.

[DISCLAIMER: this information might be outdated in the future, pretty soon..]

NumPy

76

NumPy

A third-party package added to Python to support scientific
computing

• in particular, it provides you with multi-dimensional array objects

❖ i.e. support matrix manipulation, linear algebra, all operations you might want to do on large
collection of numbers (e.g. plenty in ML!)

77D. Bonacorsi

https://numpy.org/

The NumPy paper

The NumPy paper on Nature

• https://www.nature.com/
articles/s41586-020-2649-2

To be formally cited as:

• Harris, C.R., Millman, K.J., van
der Walt, S.J. et al. Array
programming with
NumPy. Nature 585, 357–362
(2020). https://doi.org/
10.1038/s41586-020-2649-2

D. Bonacorsi78

Pandas

79

D. Bonacorsi 80AML - AA 2019/20

Pandas

Pandas is an open source library providing high-performance, easy-
to-use data structures and data analysis tools for Python.

https://pandas.pydata.org/

Matplotlib

81

D. Bonacorsi 82AML - AA 2019/20

Matplotlib

A package that offers a huge range of predefined functions to plot
and visualise your data.

https://matplotlib.org/

ML libraries and frameworks

83

ML tools and frameworks

D. Bonacorsi84

Nowadays, often tools define what you do and not only how…

• get familiar with Sklearn + Keras/Tensorflow + Pytorch + fast.ai + …

Today: scikit-learn + Keras/Tensorflow

Scikit-learn
https://scikit-learn.org

D. Bonacorsi85

The first labs will make a large use of scikit-learn!

Tensorflow and Keras

Adopt something that provides you with a modern description,
implementation and application of learning algorithms, including
neural networks (of course!)

TensorFlow: Low-level implementation of operations needed to
implement (e.g.) neural networks in multi-threaded CPU and multi
GPU environments (basically, all this.. transparently!)

Keras: High-level convenience wrapper for backend libraries, e.g.
TensorFlow, to implement neural network models

D. Bonacorsi86

on top of (e.g.) Tensorflow

a good backend choice

Both quite popular, and widely adopted

D. Bonacorsi87

Dec 2020

[google trends] Keras

Tensorflow
Pytorch

fastai

[Disclaimer: plenty of caveats in such comparisons..]

Bump in 2015 as TF became public

Today:

Tensorflow

TensorFlow is an open source (since 2015) software library by the
Google Brain team for numerical computation using data flow
graphs.

• Nodes in the graph represent mathematical operations..

• .. while the graph edges represent the multidimensional data arrays (tensors)
communicated between them.

In first approx: Tensorflow is not only about NNs..

.. but it is a perfect match to implement NNs efficiently.

D. Bonacorsi88

Keras

(Most) popular tool to train and apply NNs

Python wrapper around multiple numerical computation libraries
• e.g. TensorFlow

• but, backends: TensorFlow, Theano, CNTK , ..

Pros:

• Hides most of the low-level operations that you don’t want to care about

Cons:

• Sacrificing little functionality for much easier user interface

Main asset: being able to go from idea to result with the least
possible delay

D. Bonacorsi89

The labs will use Keras code too!

Ready?

It is time to start our first lab!

D. Bonacorsi 90

