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[ credits to: A. Geron, “Hands-On Machine Learning With Scikit-Learn and Tensorflow” ]



MNIST
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The MNIST dataset is a set of 70k images of handwritten digits 

• Each image is labeled with the digit it represents (i.e. like “this is a 3”) 

• 784 features: 28x28 pixels each, each features represent one pixel’s intensity, 
from 0 (white) to 255 (black).  

• one of the most famous “hello world” in ML → multi-class classification



D. Bonacorsi4



D. Bonacorsi5



Set up, import the data, inspect (briefly) the data, perform the train-
test split.
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Time to code!5 minutes

Practice C1
Practice C2
Practice C3



Get the data

Get it from sklearn: 
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The dataset is split into training + test.. 
• 60k training, 10k test 

.. and it is already shuffled, so all CV folds will be similar 

• you don’t want one fold to be missing some digits

A data key containing an array with one row per 
instance and one column per feature

A target key containing an array with the labels



Inspect the data
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Train a binary classifier

Simplify and build a model that works e.g. as a “5-detector” 

• capable of distinguishing between just two classes, “5” and “not-5” 

Create the label vectors (train and test sets) for this task: 

Then, pick a classifier. An interesting choice is the SGD classifier  
• capable of handling very large datasets efficiently (it deals with training 

instances independently, one at a time - which also makes SGD well suited for 
online learning) 

Train and predict is easy..

D. Bonacorsi10



Implement a 5-detector.
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Time to code!5 minutesPractice C4



Train a binary classifier

OK, it seems to work.. which is the performance of this model?

D. Bonacorsi12



Compute the accuracy 

• hint: use cross_val_score() function in sklearn to evaluate your SGDClassifier 
model using k-fold cross-validation, with k=3
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Time to code!2 minutesPractice C5



Measuring performance (accuracy) using CV
Use cross_val_score() function in sklearn to evaluate your 
SGDClassifier model using k-fold cross-validation, with k=3 

• i.e. make k trainings: split the training set into k folds, train and make 
predictions and evaluate them on each fold using a model trained on the 
remaining folds 

What!? 93-96% accuracy at first attempt!? Mmh.. 

• think at a very dumb classifier that just classifies every single image as if it 
belonged to the “not-5” class: it will have 90% accuracy! (if enough data, only 
about 10% of the images are 5s, so if you always guess that an image is a 
“not-5”, you will be right roughly 90% of the time, by construction! 

Accuracy is not the preferred performance measure for classifiers 
• even worse if you are dealing with skewed datasets (i.e. when some classes 

are much more frequent than others).
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Extract the confusion matrix.
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Time to code!2 minutesPractice C6



Confusion matrix
To evaluate the performance of a classifier, build the confusion matrix 

• count misclassifications: e.g. how many times the classifier confused images of 5s 
with 3s? look in the 5th row and 3rd column of the confusion matrix 

Use cross_val_predict() and confusion_matrix()  

• cross_val_predict() is similar to cross_val_score(): performs K-fold CV but returns not 
the evaluation score, but the predictions made on each fold  

• then, give the target classes (y_train_5) and the predicted classes (y_train_pred) to 
confusion_matrix()  
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To clarify, perfection will look like this:



Confusion matrix
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Intuitively: the precision is 
the ability of the classifier 
not to label as positive a 
sample that is negative.

Intuitively: the recall is the 
ability of the classifier to find 

all the positive samples.



Precision, Recall, F1 score
Abandon accuracy, and compute precision and recall: 

Convenient to combine them into a single metric: the F1 score 
• harmonic mean of precision and recall: wrt regular mean, the harmonic mean does not 

treat all values equally, but gives much more weight to low values. As a result, the 
classifier will only get a high F1 score if both recall and precision are high 

• additionally, good to have just one performance metric (if I need to compare 2 
classifiers) 
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My 5-detector does not look as 
shiny as it did when I looked at its 
accuracy only… 

• when it claims an image represents a 
5, it is correct only 72.9% of the time 

• and it detects only 75.6% of the 5s



Precision/Recall trade-off

Looking at various thresholds, it is evident that when precision increases then 
recall reduces, and vice versa. This is called the precision/recall tradeoff 

“How do I choose the threshold?”.
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SGDClassifier, for each instance, 
computes a score based on a 
decision function, and if that 

score is greater/smaller than a 
threshold, it assigns the instance 

to the positive/negative class



Receiver Operating Characteristic (ROC)
The Receiver Operating Characteristic (ROC) curve is another very 
common tool used with binary classifier 

It is very similar to the precision/recall curve, but: 

• it plots the TPR (= recall) against the FPR (FPR = ratio of negative instances that 
are incorrectly classified as positive), which is FPR=1-TNR (TNR = ratio of negative 
instances that are correctly classified as negative - also called specificity). In other 
words, the ROC curve plots sensitivity (recall) versus 1 – specificity.
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.. and then plot:



Area Under the Curve (AUC)
Observations on the ROC: 

• the higher (lower) the TPR, the more (fewer)  
false positives FPR the classifier produces 

• the dotted line represents the ROC curve  
of a purely random classifier 

• a good classifier stays as far away from that  
line as possible, toward the top-left corner 

To compare classifiers you need a number: this could be then the 
Area Under the ROC Curve (AUC) 

• a perfect classifier will have AUC = 1 

• a purely random classifier will have AUC = 0.5.
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Model comparison using AUC

Use ROC+AUC as performance metrics. Get them for all models, 
and you can compare them. 

• e.g. (not in the notebook) if one trains a RandomForestClassifier and 
compare its ROC curve and ROC AUC score to the SGDClassifier
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RandomForestClassifier’s ROC curve looks 
much better than the SGDClassifier’s.

AUC scores also show this (below)

SGDClassifier

RandomForestClassifier



MNIST recap so far

Now you recapped a bit how to: 

• train a binary classifier 

• choose the appropriate metric for your task 

• evaluate your classifiers using CV 

• select the precision/recall tradeoff that fits your needs, and compare various 
models using ROC curves and ROC AUC scores 

Now let’s try to detect more than just the 5s…
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That’s it, 
for our Lab on Classification
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