Lab on Classification

[credits to: A. Geron, “Hands-On Machine Learning With Scikit-Learn and Tensorflow”]
The **MNIST** dataset is a set of 70k images of handwritten digits

- Each image is **labeled** with the digit it represents (i.e. like “this is a 3”)
- 784 **features**: 28x28 pixels each, each features represent one pixel’s intensity, from 0 (white) to 255 (black).
- one of the most famous “hello world” in ML → **multi-class classification**
MNIST reborn, restored and expanded. Now with an extra 50,000 training samples.

If you used the original MNIST test set more than a few times, chances are your models overfit the test set. Time to test them on those extra samples.

arxiv.org/abs/1905.10498

7:03 AM - 29 May 2019
Set up, import the data, inspect (briefly) the data, perform the train-test split.

Practice C1
Practice C2
Practice C3

5 minutes
Time to code!
Get the data

Get it from sklearn:

```python
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1)
mnist.keys()
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'details', 'categories', 'url'])
```

```python
X, y = mnist['data'], mnist['target']
X.shape
(70000, 784)
```

A data key containing an array with one row per instance and one column per feature

A target key containing an array with the labels

```python
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
```

The dataset is split into training + test..

- 60k training, 10k test

.. and it is already shuffled, so all CV folds will be similar

- you don’t want one fold to be missing some digits
Inspect the data

```python
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt

some_digit = X[0]
some_digit_image = some_digit.reshape(28, 28)
plt.imshow(some_digit_image, cmap = mpl.cm.binary, interpolation="nearest")
plt.axis("off")

save_fig("some_digit_plot")
plt.show()
```

Saving figure some_digit_plot
Train a **binary** classifier

Simplify and build a model that works e.g. as a “5-detector”

- capable of distinguishing between just two classes, “5” and “not-5”

Create the label vectors (train and test sets) for this task:

\[
\begin{align*}
y_{\text{train}}_5 &= (y_{\text{train}} == 5) \\
y_{\text{test}}_5 &= (y_{\text{test}} == 5)
\end{align*}
\]

Then, pick a classifier. An interesting choice is the **SGD classifier**

- capable of handling very large datasets efficiently (it deals with training instances independently, one at a time - which also makes SGD well suited for online learning)

Train and predict is easy.
Implement a 5-detector.
Train a **binary** classifier

```python
from sklearn.linear_model import SGDClassifier
gd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=42)
gd_clf.fit(X_train, y_train_5)
```

I know that X[0] is a 5, X[1] is a 0, X[2] is a 4:

```python
print "y[0] =", y[0]
print "y[1] =", y[1]
```

```python
y[0] = 5
y[1] = 0
y[2] = 4
```

Let's check if the classifier we built above works for these 3 examples:

```python
[31] sgd_clf.predict([X[0]]) # X[0] is a 5
    array([ True])
[32] sgd_clf.predict([X[1]]) # X[1] is a 0, so NOT a 5
    array([False])
[33] sgd_clf.predict([X[2]]) # X[2] is a 4, so NOT a 5
    array([False])
```

OK, it seems to work.. which is the performance of this model?
Compute the accuracy

- hint: use `cross_val_score()` function in sklearn to evaluate your SGDClassifier model using k-fold cross-validation, with k=3
Measuring performance (accuracy) using CV

Use `cross_val_score()` function in sklearn to evaluate your SGDClassifier model using k-fold cross-validation, with k=3

- i.e. make k trainings: split the training set into k folds, train and make predictions and evaluate them on each fold using a model trained on the remaining folds

```python
from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
```

array([0.96355, 0.93795, 0.95615])

What!? 93-96% accuracy at first attempt!? Mmh..

- think at a very dumb classifier that just classifies every single image as if it belonged to the “not-5” class: it will have 90% accuracy! (if enough data, only about 10% of the images are 5s, so if you always guess that an image is a “not-5”, you will be right roughly 90% of the time, by construction!

Accuracy is **not** the preferred performance measure for classifiers

- even worse if you are dealing with **skewed datasets** (i.e. when some classes are much more frequent than others).
Extract the **confusion matrix**.
Confusion matrix

To evaluate the performance of a classifier, build the **confusion matrix**

- count misclassifications: e.g. how many times the classifier confused images of 5s with 3s? look in the 5th row and 3rd column of the confusion matrix

Use `cross_val_predict()` and `confusion_matrix()`

- `cross_val_predict()` is similar to `cross_val_score()`: performs K-fold CV but returns not the evaluation score, but the predictions made on each fold
- then, give the target classes (`y_train_5`) and the predicted classes (`y_train_pred`) to `confusion_matrix()`

```python
from sklearn.metrics import confusion_matrix
classification_matrix(y_5, y_pred)
```

```
array([[62736, 951],
[1516, 4797]])
```

To clarify, perfection will look like this:

```python
from sklearn.metrics import confusion_matrix
classification_matrix(y_5, y_train_perfect_predictions)
```

```
array([[54579, 0],
[0, 5421]])
```
Confusion matrix
Precision / Recall

PRECISION

"Among all patients predicted to have cancer, how many actually have it?"

\[\text{Precision} = \frac{TP}{TP + FP} \]

[Confusion matrix diagram]

\[\text{better if this is high!} \]
Precision / Recall

PRECISION

“Among all patients predicted to have cancer, how many actually have it?”

\[
\text{Precision} = \frac{TP}{TP + \text{predicted } P}
\]

(should be as high as possible!)

RECALL

“Among all patients that actually have cancer, how many did we predict to have it?”

\[
\text{Recall} = \frac{TP}{\text{actual } P}
\]

\[
\Rightarrow \frac{TP}{TP + \text{FN}} = \frac{TP}{\text{predicted } P}
\]

better if this is high!
Precision / Recall

PRECISION

"Among all patients predicted to have cancer, how many actually have it?"

\[
\text{Precision} = \frac{TP}{TP + FP} \quad (\text{should be as high as possible!})
\]

RECALL

"Among all patients that actually have cancer, how many did we predict to have it?"

\[
\text{Recall} = \frac{TP}{TP + FN} \quad (\text{should be as high as possible!})
\]
Intuitively: the precision is the ability of the classifier not to label as positive a sample that is negative.

Intuitively: the recall is the ability of the classifier to find all the positive samples.

Example:

classifier that predicts $y=0$ always:

$\Rightarrow TP = 0 \Rightarrow$ PRECISION = 0

RECALL = 0
Abandon accuracy, and compute **precision** and **recall**:

Convenient to combine them into a single metric: the **F1 score**

- **harmonic mean** of precision and recall: wrt regular mean, the harmonic mean does not treat all values equally, but gives much more weight to low values. As a result, the classifier will only get a **high F1 score if both recall and precision are high**
- additionally, good to have just one performance metric (if I need to compare 2 classifiers)

My 5-detector does not look as shiny as it did when I looked at its accuracy only…

- when it claims an image represents a 5, it is correct only 72.9% of the time
- and it detects only 75.6% of the 5s
Precision/Recall trade-off

Looking at various thresholds, it is evident that when precision increases then recall reduces, and vice versa. This is called the **precision/recall tradeoff**.

"How do I choose the threshold?".
The **Receiver Operating Characteristic (ROC)** curve is another very common tool used with binary classifier.

It is very similar to the precision/recall curve, but:

- it plots the **TPR** (= recall) against the **FPR** (FPR = ratio of negative instances that are incorrectly classified as positive), which is FPR=1-**TNR** (TNR = ratio of negative instances that are correctly classified as negative - also called **specificity**). In other words, the ROC curve plots sensitivity (recall) versus 1 – specificity.

```python
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
```

.. and then plot:
Area Under the Curve (AUC)

Observations on the ROC:

• the higher (lower) the TPR, the more (fewer) false positives FPR the classifier produces

• the dotted line represents the ROC curve of a purely random classifier

• a good classifier stays as far away from that line as possible, toward the top-left corner

To compare classifiers you need a number: this could be then the Area Under the ROC Curve (AUC)

• a perfect classifier will have AUC = 1

• a purely random classifier will have AUC = 0.5.

from sklearn.metrics import roc_auc_score
roc_auc_score(y_train_5, y_scores)

0.9611778993101814
Model comparison using AUC

Use ROC+AUC as performance metrics. Get them for all models, and you can compare them.

- e.g. (not in the notebook) if one trains a RandomForestClassifier and compare its ROC curve and ROC AUC score to the SGDClassifier

RandomForestClassifier’s ROC curve looks much better than the SGDClassifier’s. AUC scores also show this (below)

SGDClassifier

```
from sklearn.metrics import roc_auc_score
roc_auc_score(y_train_5, y_scores)
```

0.9611778893101814

RandomForestClassifier

```
roc_auc_score(y_train_5, y_scores_forest)
```

0.9983435731328145
MNIST recap so far

Now you recapped a bit how to:

• train a **binary classifier**
• choose the appropriate metric for your task
• evaluate your classifiers using CV
• select the precision/recall tradeoff that fits your needs, and compare various models using ROC curves and ROC AUC scores

Now let’s try to detect more than just the 5s…
That’s it, for our Lab on Classification