Machine Learning workshop

Prof. Daniele Bonacorsi

v o
.9

TS
- v

» > ‘o 2) & » :b
BGC 2021 Conference (Taipei, ‘22-26\ March'2021)

Lab on Classification

[credits to: A. Geron, “Hands-On Machine Learning With Scikit-Learn and Tensorflow”]|

MNIST

The MNIST dataset is a set of 70k images of handwritten digits
» Each image is labeled with the digit it represents (i.e. like “this is a 3")

» 784 features: 28x28 pixels each, each features represent one pixel’s intensity,
from O (white) to 255 (black).

e one of the most famous “hello world” in ML = multi-class classification

S04 /932 \V3 | #
Js36 1738675
Mo 7 /424327
2L 705 60F0
| 87 973938533
2072+79094/
Q¥ ¥6OHYs61 00
17213062/)7
8036782590
67246390783/

w

Applied Machine Learning course D. Bonacorsi

4 4 ' D. Bonacorsi

' Yann LeCun 4
; | Follow)
@ylecun L

MNIST reborn, restored and expanded.
Now with an extra 50,000 training samples.

If you used the original MNIST test set more
than a few times, chances are your models
overfit the test set. Time to test them on
those extra samples.
arxiv.org/abs/1905.10498

7:03 AM - 29 May 2019

onacorsi

Set up, import the data, inspect (briefly) the data, perform the train-
test split.

Practice (1

Practice (3

Giek the data

Get it from sklearn:

from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1)
mnist.keys()

dict_keys(['data', 'target',6 'feature names', 'DESCR', 'details', 'categories', 'url'])

X, y = mnist["data"]‘ mnist["target"]

A data key containing an array with one row per

X.shape j
instance and one column per feature
(70000, 784)

A target key containing an array with the labels

X train, X _test, y train, y test = X[:60000], X[60000:], y[:60000], y[60000:]

The dataset is split into training + test..

e 60k training, 10k test

.. and it is already shuffled, so all CV folds will be similar

« you don't want one fold to be missing some digits

7 D. Bonacorsi

Inspect the data

fmatplotlib inline

t matplotlib as mpl

impor

t matplotlib.pyplot as plt

impor

igit
igit

some d
some d

="nearest")

i0n

terpolat

in

mpl.cm.binary, i

t.reshape(28, 28)

igi
image, cmap

e = some d
_digit_i

~digit_
imshow (some

« 1INS

plt
plt

("off")

.ax1ls

t_plot")

ig("some_digi
plt.show()

save_f

OO0 00 000000 0O0RGM GMYANODOO0O00COOMOOGO0O0GOMOGGOS G0
w w ww ® own w n
B - - e ™
CODVOVDVOVVOO VONOMONMNOBO VOOV O VOVODVHUOODOO MOOOD OO O
W v wa & & a a a
E - - ~
D DD 00D D000 O00O0OYOMOETINOMOOOOMOOOO-"0O0OTCODOYODOD DD
I, B B | @ - S a
I B - - - -

R R E P R E R P R E R R R R E R R E R R R E E R E E N EE)
o w we W N N - - -
- - - . - -

G O0000 00000000 NO0G0YONGMOOMNONGOO0000O0NOO0G0COGnNSaoa
T T B - “ N
I - -

cocococcocococcoooo®a00 ¢
=

array(| ©

it plot

.

igi

Saving figure some_d

D. Bonacorsi

0 0 060 0 0O
0 0 00 0 O

e
0
0
0
0
0

6 0 0 0 0 0 00 0 0 0 0 0O OCOCOUO©OCOUOTUOT G OTW

0 0 00 0O 0 0 00O 0 0 0 0O
0 0 00 0O 0O 00 0 0 0 0 0O

0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O

0 0 0 0 0 O
0 000 0 O

0 0O 00 0O O O OCOOOOCOTDODOOOTOCOOUOTUGOTU®W®

0 0 00 0O O O COOOQOTOCDODOOOOOTUODOTUWD
0 0 0 0 0 0 © 0 0 0 4 621461622424 181176139 15 ¢

0 0 06 0 0 O
0 00 0 0 0

0 0 0 0 0 0 © 0 0 3188253277200 13136106%62329 ¢ 0 0 © © ¢ 0 o

0 0 0 0 0 0 0 0 626228 1M

0 0 0 0 0 18 210743 0 0 ©0 0 0 o
0 0 0 0 0 13181 6

3

0 0 0 0 0 0
0 0 0 0 0 0O

0 0 0 O

o o
LS I)
3
N &
N O
<
NN
M(l
™~
- -
L= I)
o o
L= =
L=~
L= B =
o 0O
L I =
o o

(&)
o
(=]
(=]

0 0 0 0 8 19422592 0

0 0

0
0

0

0 0 0 0 128247 51

0 0 0 0 0 169253120 23
0 0 0 0 0 0 0 0 0 3 MM2M4169 19 O

0 0 0 0 0 O

14 131280117 0 O

0 0 0 0 0 0 O

0 0 0 0 0 0 © 0 0 0 O 5924123572 14222066 0 0 ¢

0 00 0 0 0O
0 0 0 0 0 0O
0 0 00 0 O
0 0 00 0 O

0 0 0 0 0 0 0 0 0 0 0 O 252242013 0 0 0 0 O
0 0 0 C 0 0 0 0 0 0 0 0 02827 0 0 0 O

0 0 00 0 0 000 0 0 O

0
0
0
0
e
0

19237 1M1 186297 19 0 0 O

0 0 0 0 0 0 0 0 0 0 O O "4e138 0 2219020418 0 O

0 0 00 0 O
0 00 0 0 O

0 00 0 0 O

O 0 0 0 0 0 0 0 0 O 96224 0 0 0 25218169 3 O

0 0 0 0 0 0 0 0 0 O 021571388 0 0 © 0 B6 2539 O

28 x 28
784 pixels

0 00 0 0 0

0 0 0 0 0 0 0 0 0 0 0269 0 0 ©0 0 3 w2214 1
0 0 0 C 0 0 0 0 0 0 02597 0 0 ©0 0 0 M825368 O

|

0 0 0 C 0 0 © 0 0 O O 15T 0 O0 © 0 0 02549 0 0 0 © 0 0 o

0 0 0 0 0 0 © 0 0 0 0 2.4

0 0 0 0 0 0

0O 0 0 0 M224488 O

0 0 0 0 0 0O
0 0 0 0 0 O
0 0 00 0 O
0 0 06 0 0 O

0
0 0O 00 0 O ©0 0 0 OCOCTOCGOC O OOCTOCOOCTOCTCOCTDODODTOCTDOCODO OO

0
0
0

0 0 0 0 0 0 0 0 0 0 O O a1 42 VW24 O

3 0
0 0 0 0 0 0 0 O

0 0 0 0 0 0 0 0O 0O 0 O O B 133253250253 169 &1

0 0 0 O

0

0 0 0 0 0 0 0 O

0 0 0 C OO O OC O OCOCTOCODOOOOOTDODOTUGOOGOTUWD

D. Bonacorsi

Train a binary classifier

Simplify and build a model that works e.g. as a “5-detector”

* capable of distinguishing between just two classes, “5" and “not-5"

Create the label vectors (train and test sets) for this task:

y_train 5 = (y_train == 5)
y_test 5 = (y_test == 5)

Then, pick a classitier. An interesting choice is the SGD classifier

* capable of handling very large datasets efficiently (it deals with training
instances independently, one at a time - which also makes SGD well suited for

online learning)
' lem Install User Guide APl Examples More ~

Tl"a | N an d p re d | C't | S ea Sy. : i 0281 sklearn.linear_model.SGDClassifier

class sklearn.linear_model. SGDClassifier(loss="hinge’, * penalty='12', alpha=0.0001, I1_ratio=0.15,

Please cite us if you use the fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, n_jobs=None,
software. random_state=None, learning_rate="optimal’, eta0=0.0, power_t=0.5, early_stopping=False,

validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False) |

Linear classifiers (SVM, logistic regression, etc.) with SGD training.

10 D. Bonacorsi

Implement a 5-detector.

11 D. Bonacorsi

Train a binary classifier

° from sklearn.linear model import SGDClassifier

sgd_clf = SGDClassifier(max_iter=1000, tol=le-3, random state=42)
sgd clf.fit(X_train, y train 5)

Let's check if the classifier we built above works for these 3 examples:

[31] sgd _clf.predict([X[0]]) # X[0] is a 5

| know that X[0] isa 5, X[1] is a 0, X[2] is a 4:

© oprint "y[o) =", y[0)
print "y[1] =", y[1]
print "y[2] =", y[2]

> y[0] =5
y[1] =0
yl2] = 4

OK It seems 0 woric .

array([True])

[32] sgd_clf.predict([X[1]]) # X[1] is a 0, so NOT a 5

array([False])

[33] sgd _clf.predict([X[2]]) # X[2] 1s a 4, so NOT a 5

array([False])

which is the performance of this model?

12 D. Bonacorsi

Compute the accuracy

* hint: use cross_val_score() function in sklearn to evaluate your SGDClassifier
model using k-fold cross-validation, with k=3

13 D. Bonacorsi

Measuring performance (accuracy) using CV

Use cross_val_score() function in sklearn to evaluate your
SGDClassifier model using k-fold cross-validation, with k=3

* i.e. make k trainings: split the training set into k folds, train and make

predictions and evaluate them on each fold using a model trained on the
remaining folds

° from sklearn.model_ selection import cross_val_score
cross_val_score(sgd_clf, X train, y_train 5, cv=3, scoring="accuracy")

array([0.96355, 0.93795, 0.95615])

What!? 93-96% accuracy at first attempt!? Mmh..

* think at a very dumb classifier that just classifies every single image as if it
belonged to the “not-5" class: it will have 90% accuracy! (if enough data, only
about 10% of the images are 5s, so if you always guess that an image is a
“not-5", you will be right roughly 90% of the time, by construction!

Accuracy is not the preferred performance measure for classifiers

» even worse if you are dealing with skewed datasets (i.e. when some classes
are much more frequent than others).

14 D. Bonacorsi

Extract the confusion matrix.

15 D. Bonacorsi

Confusion matrix

To evaluate the performance of a classifier, build the confusion matrix

« count misclassifications: e.g. how many times the classifier confused images of 5s
with 3s? look in the 5th row and 3rd column of the confusion matrix

Use cross_val_predict() and confusion_matrix()

» cross_val_predict() is similar to cross_val_score(): performs K-fold CV but returns not
the evaluation score, but the predictions made on each fold

* then, give the target classes (y_train_5) and the predicted classes (y_train_pred) to
confusion_matrix()

° from sklearn.model_ selection import cross_val_predict

y_train pred = cross_val predict(sgd clf, X train, y train 5, cv=3)
To clarify, perfection will look like this:

o from sklearn.metrics import confusion matrix
° y_train_perfect_ predictions = y train 5 # pretend we reached perfection

confusion matrix(y_train 5, y_train perfect_predictions)
confusion matrix(y 5, y pred)
lTarray([[54579, 0], 1

[» array([[62736, 951], :_____[__g,_f-t_zl_ll)__:

[1516, 4797]1])

16 D. Bonacorsi

Confusion matrix

Predicted
@ Negative Positive

| F 3 7
S 2

Precision
(e.g., 3 out of 4)

Positive - — % LY S
o

Recall
(e.g., 3 out of 5)

117/ D. Bonacors

Precisi on / Recsll

PREC(SION
”Amws oll palients prodicfed To howe

Comeer howy mouny ..soh»lly hove if 7

i Y
=2 how precse

N 1P TP

%aue Zélq [ae,bv\

:\/ - —— = — -
E(&&C‘kdt} [P+t
N \/
TP+TP

Applied Machine Learning course 18

D. Bonacorsi

PYeC':S(‘Oh / QECS“ ﬁ%{;ﬁ ' 0
+

PREC(SION)
//Amcmg a“ PQR&J‘S W&c‘ ro L\aue, 7(4 O {_N \ N
Comcer, how moiny i“iuj hove if .]

Ji TP (%L\Owu IDL Qs ‘u&k i< (’Osﬁiue /)
TPHEP) predectd P

RecalL

! l\qu& all pliends that é_c’j“il_lz have cancer,

Mow M.vw, did we ff_té«)cf_—'ro hove f 7 y
U ;

0 H T < (P ([d’ \ 7 o
' (¥ “recalleo oumd)
S no Wwawy of f/rg (P were * recalled \ ¥ J .
[{1 ':,1
. e - be tte / "
X » JC vy
K IT - ! I
:> -~ ——,——;— —\ thas s Wi
2\{—/1;' |_ F4+ N S

Applied Machine Learning course 19 D. Bonacorsi

Precision / Recsll ﬁ%ﬁ: l o
¢

PREC(SION —
//AMOMX all F&R&J‘s M To have " O fN \ N

Comeer how mony .aofual!y hove if

AZIL TP (sl\ow“ be as K&L\ BN Posgiue -/)
F}i presicled r

[—

-

—_—

RecalL

I AWLDD\& Sl psTents Tht QL]L‘*{[_‘Z have cancer,
how mawwy did e predict To kawe. if 7

&Zl TP (S[\ow[c[be as L\a&k SAS Pos;,[ue ./)
‘,j_ﬂ\ J aclual P

—

=

Applied Machine Learning course 20 D. Bonacorsi

Precision / Recall

Exangle

classifter That pr edicts

—r

\/;\O

‘r) P \
—_—) ol — [| —
— | — . '

FRECISION

the ability of the classifier
not to label as positive a
sample that is negative.

Intuitively: the recall is the

ability of the classifier to find

all the positive samples.

;I\x()y

Y S—

7 | C

QECAL =

Applied Machine Learning course

21

Intuitively: the precision is Ir%/ -

t

[

0

D. Bonacorsi

Rrecicion. Reecall Bl seane

Abandon accuracy, and compute precision and recall:

My 5-detector does not look as
° from sklearn.metrics import precision_score, recall score 5 5 5 .
shiny as it did when | looked at its

prec = precision score(y_train 5, y _train pred) acCCcu racy Only
reca = recall score(y train 5, y train pred) s
print("precision", prec)

print(frecali’, reca) when it claims an image represents a

precision 0.7290850836596654 5, It Is correct On|y 72.9% Of the time

recall 0.7555801512636044
» and it detects only 75.6% of the 5s

Convenient to combine them into a single metric: the F1 score

 harmonic mean of precision and recall: wrt regular mean, the harmonic mean does not
treat all values equally, but gives much more weight to low values. As a result, the
classifier will only get a high F1 score if both recall and precision are high

» additionally, good to have just one performance metric (if | need to compare 2

classifiers)
° from sklearn.metrics import f1 score ‘(4 P R
E sore = 2
P+R

f1 score(y_train 5, y train pred)

0.7420962043663375 I

22 D. Bonacorsi

Precision/Recall trade-oft

Precision: 6/8 =75% 4/5 = 80% 3/3 =100%
Recall: 6/6 = 100% 4/6 = 67% 3/6 = 50% SGDClassifier, for each instance,

computes a score based on a

& ; z ? 5) 6’ 6 5' s 5 decis.ion function, and if that

> Score score is greater /smaller than a
Festivs predictions threshold, it assigns the instance

[:> to the positive /negative class

Negative predictions - A P

—

Various thresholds

Looking at various thresholds, it is evident that when precision increases then
recall reduces, and vice versa. This is called the precision/recall tradeoff

"How do | choose the threshold?”.

L———— === ~
... ”.’
0.8 - :
0.6 - —
/ : === Precision
/ :
... Y I . - —— Recall
0.4 4 Y :
/
/
7/
/
0.2 _»7
0.0 . . ! : } ’
—40000 —20000 0 20000 40000
Threshold

23 D. Bonacorsi

Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic (ROC) curve is another very
common tool used with binary classifier

It is very similar to the precision/recall curve, but:

* it plots the TPR (= recall) against the FPR (FPR = ratio of negative instances that
are incorrectly classified as positive), which is FPR=1-TNR (TNR = ratio of negative
instances that are correctly classified as negative - also called specificity). In other
words, the ROC curve plots sensitivity (recall) versus 1 — specificity.

1.0
° from sklearn.metrics import roc_curve b
fpr, tpr, thresholds = roc_curve(y_train 5, y_scores) E
[}
e
o 06
4
T
o
[}
- >
R
‘» 0.4
n
.. and then plot: g
)
=1
=
0.2
00 # - . , .
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate (Fall-Out)

24 D. Bonacorsi

Area Under the Curve (AUC)

Observations on the ROC:

0.8

* the higher (lower) the TPR, the more (fewer)
false positives FPR the classifier produces

0.6

04

* the dotted line represents the ROC curve
of a purely random classifier

True Positive Rate (Recall)

02

0.0 #

* a good classifier stays as far away from that © ¥ erekveatefuon ©
line as possible, toward the top-left corner

To compare classifiers you need a number: this could be then the
Area Under the ROC Curve (AUQC)

* a perfect classifier will have AUC = 1

* a purely random classifier will have AUC = 0.5.

° from sklearn.metrics import roc_auc_score

roc_auc_score(y_train 5, y_ scores)

0.9611778893101814

25 D. Bonacorsi

Model comparison using AUC

Use ROC+AUC as performance metrics. Get them for all models,
and you can compare them.

True Positive Rate (Recall)

* e.g. (not in the notebook) if one trains a RandomForestClassifier and
compare its ROC curve and ROC AUC score to the SGDClassifier

1.0

08f i

0.6

—— Random Forest

SGD

0.2

0.4 0.6
False Positive Rate

0.8

26

1.0

RandomForestClassifier’s ROC curve looks
much better than the SGDClassifier’s.
AUC scores also show this (below)

SGDC(Classifier

° from sklearn.metrics import roc_auc_score

roc_auc_score(y_train 5, y_ scores)

RandomForestClassifier

° roc_auc_score(y train 5, y scores_forest)

D. Bonacorsi

MNIST recap so far

Now you recapped a bit how to:
* train a binary classifier

 choose the appropriate metric for your task

 evaluate your classifiers using CV

* select the precision/recall tradeoff that fits your needs, and compare various
models using ROC curves and ROC AUC scores

Now let's try to detect more than just the 5s...

27 D. Bonacorsi

Laate it
for our Lab on Classification

