Machine Learning workshop Prof. Daniele Bonacorsi

March 22, 2021

Ψ

ISGC 2021

Machine Learning workshop

the ISGC 2021 Conference (Taipei, 22-26 March 2021)

Lab on **Classification**

[credits to: A. Geron, "Hands-On Machine Learning With Scikit-Learn and Tensorflow"]

MNIST

The **MNIST** dataset is a set of 70k images of handwritten digits

- Each image is **labeled** with the digit it represents (i.e. like "this is a 3")
- 784 **features**: 28x28 pixels each, each features represent one pixel's intensity, from 0 (white) to 255 (black).
- one of the most famous "hello world" in ML → multi-class classification

Follow

MNIST reborn, restored and expanded. Now with an extra 50,000 training samples.

If you used the original MNIST test set more than a few times, chances are your models overfit the test set. Time to test them on those extra samples.

arxiv.org/abs/1905.10498

7:03 AM - 29 May 2019

Set up, import the data, inspect (briefly) the data, perform the traintest split.

Get the data

Get it from sklearn:

The dataset is **split into training + test**..

- 60k training, 10k test
- .. and it is already **shuffled**, so all CV folds will be similar
 - you don't want one fold to be missing some digits

Inspect the data

```
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
```

```
some_digit = X[0]
some_digit_image = some_digit.reshape(28, 28)
plt.imshow(some_digit_image, cmap = mpl.cm.binary, interpolation="nearest")
plt.axis("off")
```

```
save_fig("some_digit_plot")
plt.show()
```

Saving figure some_digit_plot

	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Û	Ô	Ô	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	4	62	146	182	254	254	181	176	139	15	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	34	186	253	217	208	136	136	136	166	232	99	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	61	242	208	111	3	0	0	0	0	0	18	32	107	43	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	156	242	23	0	0	0	0	0	0	0	13	191	181	6	0	0	0	0	0	0
		0	0	0	0	0	0	0 0 61 242 20 0 0 156 242 23 0 0 121 255 98 0 0 0 169 25 0 0 0 3 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	98	3	0	0	0	0	0	8	194	225	12	0	0	0	0	0	0	0			
-		0	0	0	0	0	0	0	0	0	169	253	120	3	0	0	0	0	128	247	51	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	з	111	244	169	19	0	14	131	249	117	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	59	241	235	72	142	229	66	0	0	0	0	0	0	0	0	0	0
	>	0	0	0	0	0	0	0	0	0	0	0	0	25	218	254	231	36	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0	0	0	0	0	133	253	221	33	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	19	237	111	196	217	19	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	174	138	0	23	193	204	18	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	96	224	0	0	0	25	218	169	3	0	0	0	0	0	0	0	0
28 x 28		0	0	0	0	0	0	0	0	0	0	0	215	138	0	0	0	0	86	253	99	0	0	0	0	0	0	0	0
784 pixels		0	0	0	0	0	0	0	0	0	0	0	215	97	0	0	0	0	3	162	214	11	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	215	97	0	0	0	0	0	118	253	68	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	185	157	0	0	0	0	0	40	254	98	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	50	244	61	0	0	0	0	112	244	58	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	174	251	142	59	83	167	244	111	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	6	133	253	253	253	169	61	з	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Train a **binary** classifier

Simplify and build a model that works e.g. as a "5-detector"

• capable of distinguishing between just two classes, "5" and "not-5"

Create the label vectors (train and test sets) for this task:

y_train_5 = (y_train == 5)
y_test_5 = (y_test == 5)

Then, pick a classifier. An interesting choice is the SGD classifier

 capable of handling very large datasets efficiently (it deals with training instances independently, one at a time - which also makes SGD well suited for online learning)

Train and predict is easy..

Implement a 5-detector.

Practice C4

5 minutes

Time to code!

Train a **binary** classifier from sklearn.linear model import SGDClassifier sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random state=42) sgd clf.fit(X train, y train 5) Let's check if the classifier we built above works for these 3 examples: [31] sgd clf.predict([X[0]]) # X[0] is a 5 I know that X[0] is a 5, X[1] is a 0, X[2] is a 4: array([True]) print "y[0] =", y[0] print "y[1] =", y[1] [32] sgd clf.predict([X[1]]) # X[1] is a 0, so NOT a 5 print "y[2] =", y[2] array([False]) $\Gamma \rightarrow y[0] = 5$ y[1] = 0y[2] = 4[33] sgd clf.predict([X[2]]) # X[2] is a 4, so NOT a 5 array([False])

OK, it seems to work.. which is the performance of this model?

Compute the accuracy

 hint: use cross_val_score() function in sklearn to evaluate your SGDClassifier model using k-fold cross-validation, with k=3

Practice C5 2 minutes Time to code!

Measuring performance (accuracy) using CV

Use cross_val_score() function in sklearn to evaluate your SGDClassifier model using k-fold cross-validation, with k=3

• i.e. make k trainings: split the training set into k folds, train and make predictions and evaluate them on each fold using a model trained on the remaining folds

from sklearn.model_selection import cross_val_score cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")

array([0.96355, 0.93795, 0.95615])

What!? 93-96% accuracy at first attempt!? Mmh..

 think at a very dumb classifier that just classifies every single image as if it belonged to the "not-5" class: it will have 90% accuracy! (if enough data, only about 10% of the images are 5s, so if you always guess that an image is a "not-5", you will be right roughly 90% of the time, by construction!

Accuracy is <u>not</u> the preferred performance measure for classifiers

• even worse if you are dealing with **skewed datasets** (i.e. when some classes are much more frequent than others).

Extract the **confusion matrix**.

Practice C6

2 minutes

Time to code!

Confusion matrix

To evaluate the performance of a classifier, build the **confusion matrix**

 count misclassifications: e.g. how many times the classifier confused images of 5s with 3s? look in the 5th row and 3rd column of the confusion matrix

Use cross_val_predict() and confusion_matrix()

- cross_val_predict() is similar to cross_val_score(): performs K-fold CV but returns not the evaluation score, but the predictions made on each fold
- then, give the target classes (y_train_5) and the predicted classes (y_train_pred) to confusion_matrix()

Confusion matrix

Precision / Recall Ο PRECISION "Among all patients predicted to have cancer, how many actually have it ?" - how "precise" have you been ? better if this is high X TP X predicted P $= \frac{TP}{TP+FP}$ (=

Precision / Recall
PRECISION
"Among all patients predicted to have
concer, how many actually have it?"

$$duf = \frac{TP}{TP+FP} \quad (should be as high as possible!)$$
PRECALL
"Among all patients that actually have cancer,
how many did we predicted P
RECALL
"Among all patients that actually have cancer,
how many did we predict to have it?"
 \Rightarrow "how many of the TP were "recalled" (found)?"
 \Rightarrow "how many of the TP were "recalled" (found)?"
 \Rightarrow "how many of the TP were "recalled" (found)?"

Precision, Recall, F1 score

Abandon accuracy, and compute **precision** and **recall**:

My 5-detector does not look as shiny as it did when I looked at its accuracy only...

- when it claims an image represents a 5, it is correct only 72.9% of the time
- and it detects only 75.6% of the 5s

Convenient to combine them into a single metric: the F1 score

- harmonic mean of precision and recall: wrt regular mean, the harmonic mean does not treat all values equally, but gives much more weight to low values. As a result, the classifier will only get a high F1 score if both recall and precision are high
- additionally, good to have just one performance metric (if I need to compare 2 classifiers)

Precision/Recall trade-off

SGDClassifier, for each instance, computes a score based on a decision function, and if that score is greater/smaller than a threshold, it assigns the instance to the positive/negative class

Looking at various thresholds, it is evident that when precision increases then recall reduces, and vice versa. This is called the **precision/recall tradeoff**

"How do I choose the threshold?".

Receiver Operating Characteristic (ROC)

The **Receiver Operating Characteristic** (**ROC**) curve is another very common tool used with binary classifier

It is very similar to the precision/recall curve, but:

 it plots the TPR (= recall) against the FPR (FPR = ratio of negative instances that are incorrectly classified as positive), which is FPR=1-TNR (TNR = ratio of negative instances that are correctly classified as negative - also called specificity). In other words, the ROC curve plots sensitivity (recall) versus 1 – specificity.

Area Under the Curve (AUC)

Observations on the ROC:

- the higher (lower) the TPR, the more (fewer) false positives FPR the classifier produces
- the dotted line represents the ROC curve of a purely random classifier
- a good classifier stays as far away from that line as possible, toward the top-left corner

To compare classifiers you need a number: this could be then the **Area Under the** ROC **Curve** (AUC)

- a perfect classifier will have AUC = 1
- a purely random classifier will have AUC = 0.5.

Model comparison using AUC

Use ROC+AUC as performance metrics. Get them for all models, and you can compare them.

• e.g. (not in the notebook) if one trains a **RandomForestClassifier** and compare its ROC curve and ROC AUC score to the **SGDClassifier**

MNIST recap so far

Now you recapped a bit how to:

- train a **binary classifier**
- choose the appropriate metric for your task
- evaluate your classifiers using CV
- select the precision/recall tradeoff that fits your needs, and compare various models using ROC curves and ROC AUC scores

Now let's try to detect more than just the 5s...

That's it, for our Lab on **Classification**