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Efficient data representation   [1/3]

Which of the following number sequences do you find the easiest to 
memorize? 

• 40, 27, 25, 36, 81, 57, 10, 73, 19, 68 

• 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14
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Efficient data representation   [2/3]

At first glance: 

• it would seem that the first sequence should be easier, since it is much shorter 

However, if you look carefully at the second sequence.. 

• you will notice that it is just the list of even numbers from 50 down to 14. 

• Once you notice a pattern, the sequence becomes much easier to memorise 
as you actually do NOT memorise the sequence itself, you just memorise the 
protocol and the starting/ending numbers (to create any former one from the 
latter ones) 

Why is this important?
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Efficient data representation   [3/3]

The latter is important because what we did would not be strictly 
necessary 

• if you could quickly and easily memorise very long sequences, you would not 
care much about the existence of a pattern in the second sequence. You 
would just learn every number by heart, and that would be that. 

• The fact that it is hard to memorise long sequences is what makes it useful to 
recognise patterns 

This is why we can make a very good use of a NN architecture that I 
can be constrained during training: it pushes it to discover and 
exploit patterns in the data.
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Another example: pattern matching in chess

The relationship between memory, perception, and pattern 
matching was studied in the early 1970’s [Ref-ChaseSimon]  

• observation that expert chess players were able to memorise the positions of 
all the pieces in a game by looking at the board for just five seconds, a task 
that most people would find impossible 

• However, this was the case when the pieces were placed only in realistic 
positions (from actual games), not when the pieces were placed randomly. 

• Ultimately, chess experts don’t have a much better memory than others; they 
just see (chess) patterns more easily, thanks to their experience with the game.  

Noticing patterns helps them to store information efficiently 

The “logic” of the NN architecture we are discussing next is not far 
from the core of this memory experiment.. 
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Autoencoders (AEs)

A feed-forward NN with the output that is the same as the input 

• said in this way, it sounds useless, right? 

The AE: 

• compresses the input into a lower-dimensional representation (aka “latent-
space representation” or “code”) 

❖ The “code” can be thought of a compact “summary”, a “compression” of the input 

• reconstruct the output from such representation
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AE basic concepts

An AE consists of 3 components: 

• encoder, code, decoder 

Note that encoder and decoder do not talk to each other 

• the encoder compresses the input and produces the code 

• the decoder uses the code and “reconstructs the input”, yielding the output 

So, to build an AE we need 1) an encoding method, 2) a decoding 
method, 3) a loss function to compare the output with the target
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“AE is not gzip”

AEs can be thought as dimensionality reduction (compression) 
algorithms, but with some peculiar properties 

• data-specific: w.r.t. standard data compression algorithms, AEs learn features 
specific for the given training data, so they are only able to meaningfully 
compress data similar to what they have been trained on 

• lossy: the AE’s output will be a close but somehow degraded representation of 
the input 

• {un-,self-}supervised: we can throw data to an AE and train it w/o any prior 
action. No need for labels → un-supervised, but actually imprecise: self-
supervised, because they generate their own labels from the training dataset
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AE architecture

Both encoder and decoder are FC FF ANN. Code is a single layer 
of an ANN with the dimensionality of our choice 

• code size (# nodes in code layer) is a hyperparameter we set before training
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Requirement: 
same 

dimensionality of 
input and output

Not a 
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encoder/decoder 
architectures are 

mirrored

“Stacked” AE
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AE hyperparameters

Not so many: 

• Code size: # of nodes in the code layer 

❖ Smaller size → more compression 

• # of layers: AE can be as deep as we like/need 

• # nodes per layer: Usually, stacked-AE are like a sandwich, i.e. # nodes 
decreases (increases) with each subsequent layer of the encoder (decoder) 

• loss function: MSE or binary cross-entropy can be used (typically, the latter if 
input values are in the range [0, 1]) 

AEs are trained the same way as ANNs 

• via back-propagation and GD
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Today: AE implementation in the code

Which input image can we choose for a demo?



Let’s implement a very simple AE to perform MNIST classification  

• for educational purposes: same example we previously approached: 

1. with basic ML models, and… 

2. … with a CNN
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Time to code!

You can follow these slides, and practice the code later, or you can 
play on Colab in real time!
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Time to code!

http://bit.ly/Bertinoro1

If you are trying all this real-time during the workshop, this 
means now you should go to colab and follow from there



AE implementation: an example
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MNIST input is 28x28 
images, vectorised into 784 

bits long arrays

Our AE 
architectural choices

Sigmoid as we need the outputs 
to be between [0, 1] (input also in 

the same range)

AE implementation: an example
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Keras Functional API
The difference is that we used the Keras Functional API  

• https://keras.io/guides/functional_api/ 

It is a way to create models in a more flexible way: 

• it can handle models with non-linear topology, models with shared layers, models 
with multiple inputs or outputs, .. 

The main idea is that a DL model is usually a directed acyclic graph 
(DAG) of layers, so the Keras Functional API is a way to build graphs of 
layers.
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Keras Sequential API

Keras Functional API

More verbose but more flexible (better for complex models). The output of Dense method is a 
callable layer, i.e. I can easily grab parts of the model, and flexibly work with those onwards.

①



Model fit

{un-,self-}supervised: the targets of the AE are the same as the 
input. That’s why we supply the training data as the target
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Model summary and viz
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plot_model (in keras.utils)

summary()



BTW.. about visualising ANN

Net2Vis: https://viscom.net2vis.uni-ulm.de
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Bonus feature!
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Our AE with Net2Vis

Bonus feature!



Code to cut&paste for Net2Vis
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# You can freely modify this file.
# However, you need to have a function that is 
named get_model and returns a Keras Model.
import keras as k
from keras import models
from keras import layers
from keras import utils

def get_model():
    input_size = 784
    hidden_size = 128
    code_size = 32

    input_img = k.Input(shape=(input_size,))

    hidden_1 = layers.Dense(hidden_size, 
activation='relu')(input_img)
    code = layers.Dense(code_size, 
activation='relu')(hidden_1)
    hidden_2 = layers.Dense(hidden_size, 
activation='relu')(code)
    output_img = layers.Dense(input_size, 
activation='sigmoid')(hidden_2)

    model = models.Model(input_img, 
output_img)

    return model

Bonus feature!



Predict

We can run the AE on the test set simply by using the Keras predict 
function of Keras.  

For every image in the test set, we check the AE output. We expect 
the output to be very similar to the input.
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Not perfect, but not bad! 
(given the simplicity of the 

AE architecture)

Note the the handwritten “4”  
which could be mistakenly 

taken as a “9"



Sometimes very easy to debug an AE.. ;)
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Ehm..

OK..



Shallow vs Deep AE
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Shallow AE

Deep (well…) AE



Shallow vs Deep AE
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Shallow AE

Deep (well…) AE

Check details of e.g. the “2” 
in the two cases



QUIZ.. can you guess which AE arch gives me this?
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QUIZ.. can you guess which AE arch gives me this?
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SOLUTION(s):
(for example..)

Trainable params: 34,715,784Trainable params: 2,461,760

Basic: trainable params: 209,968, then…



More on AE architectural choice
We can make an AE very powerful by increasing # of layers, # nodes 
per layer and (most importantly) the code size.  

• higher values of these hyperparameters → AE will learn more complex codings 

Careful about making it too powerful, or it will simply learn to copy its 
inputs to the output, without learning any meaningful (latent) 
representation. Not the right way to go, because: 

•  you do NOT need an ANN to get the identity function :) 

• an AE that reconstructs the training data perfectly will be overfitting 

→ “sandwich” AE architecture, with code size (deliberately) kept small 

Code layer with lower dimensionality than the input data → 
“undercomplete” AE: it won’t be able to directly copy its inputs to the 
output, and will be forced to learn intelligent features. 

• i.e. learn patterns  (e.g. how “0" differs from “7”), and encode it in a compact form. 
Random images will not be reconstructed well by an undercomplete AE, but in real 
world images there is luckily a lot of correlations/dependencies, so it just works
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A variety of AE techniques

The key is to force the AE to learn useful features. 

Various ways to do so: 

• by keeping the code size small (see previous slides) 

• by adding random noise and forcing to recover the noise-free data (next) 

• by using regularisation
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Denoising AE (dAE)

The AE learns an intelligent representation of the input being forced 
to do so by keeping the code layer small.  

An AE can learn useful features by adding random noise to the 
input and making it recover the original noise-free data 

• in this case, a straight copy input-to-output will not work 

• the AE is forced to identify the noise and subtract it, thus exposing the 
underlying meaningful data 

This is a Denoising AE.
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We take the original images, add random Gaussian noise, and send 
these images as input to the dAE 

• in this way, the dAE does not see the original images at all  

• we expect it to regenerate the noise-free original images, though
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dAE implementation: an example

[ See the code as of 
how to generate noise ]



dAE implementation: model creation and fit
As before, with only a change:
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The input to the dAE is the noisy data. 
The expected target is the original noise-free data



dAE implementation: results
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Sparse AE (sAE)

Method: regularise the AE by using a “sparsity constraint”, such that 
only a fraction of the nodes (“active nodes”) would have non-0 
values 

• how? add a penalty term to the loss function such that only a fraction of the 
nodes become active. 

This simple trick forces the AE to represent each input using a 
combination of a smaller # of nodes (not all of them), but still 
demands it to discover interesting structure in the data  

• a plus: it works even if you want to keep the code size large, as only a small 
subset of the nodes will be active at any time
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NOTE: the final loss of the sAE 
model will be higher than the 
standard AE (due to the added 
regularisation term), but that’s fine 
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Sparse AE (sAE): implementation

add the activity_regularizer parameter 
and specifying the regularisation 

strength (typically [0.001, 0.000001])
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(Shallow) AE

Sparse AE

Sparse AE (sAE): results



Visualise the “sparsity” in sAE

Helpful to visualise encodings generated by the sAE to be indeed sparse 

• check the distribution of code values in both models, for the images in the test set 

Standard AE: mean 6.64, sAE: mean 0.76. A quite big reduction! 

• definitely, a large chunk of code values in the sAE model are indeed 0, which is what 
we wanted 

• The variance of the sAE model is also fairly low
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Concluding on AEs

Compared to CNNs, not so widely used in real-world applications.. 

• as a compression method, they don’t perform better than its alternatives 

• their data-specificity makes them impractical as a general technique 

But.. 

• … first of all you can use the power of CNN and AE together 

• … and nevertheless, there are extremely interesting use-cases of AE 
applications
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Convolutional AE

If you are dealing with images, and you might need an AE (e.g. for 
unsupervised pretraining or dimensionality reduction), but the AEs we 
have seen so far will not work well (unless the images are very small)  

• CNNs are far better suited than dense networks to deal with images  

So, if you want to build an AE for images, you will need to build a 
more complex architecture: a convolutional AE, built this way: 

• the encoder is a regular CNN composed of convolutional layers and pooling 
layers. It typically reduces the spatial dimensionality of the inputs (i.e., height 
and width) while increasing its depth (i.e., the number of feature maps) 

• the decoder must do the reverse (upscale the image and reduce its depth back 
to the original dimensions), and for this you can use transpose convolutional 
layers; alternatively, you could combine upsampling layers with convolutional 
layers 

❖ upsampling layers (UpSampling2D) simply double the dimensions of the input 

❖ transpose convolutional layer (Conv2DTranspose) perform an inverse convolution operation
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AEs use-cases

- Data denoising: we discussed this (for easy images, at least) 

- Dimensionality reduction: visualising high-dimensional data is 
challenging 

❖ t-SNE is one of the most commonly used method but struggles with large number of dimensions 
(typically above 32). AEs are used as a preprocessing step to reduce the dimensionality, and this 
compressed representation is used by t-SNE to visualise the data in 2D space 

- in the form of Variational Autoencoders (VAE): a more modern 
and complex use-case of AEs  

• w.r.t vanilla AEs - that learn an arbitrary function - VAEs learns the parameters 
of the probability distribution modelling the input data. By sampling points 
from this distribution we can also use the VAE as a generative model..
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②



That’s it, 
for our  Lab on AEs
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