
D. Bonacorsi1

Prof. Daniele Bonacorsi

Machine Learning workshop

ISGC 2021

March 22, 2021

Lab on
Autoencoders (AE)

2

Efficient data representation [1/3]

Which of the following number sequences do you find the easiest to
memorize?

• 40, 27, 25, 36, 81, 57, 10, 73, 19, 68

• 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14

Applied Machine Learning D. Bonacorsi3

Efficient data representation [2/3]

At first glance:

• it would seem that the first sequence should be easier, since it is much shorter

However, if you look carefully at the second sequence..

• you will notice that it is just the list of even numbers from 50 down to 14.

• Once you notice a pattern, the sequence becomes much easier to memorise
as you actually do NOT memorise the sequence itself, you just memorise the
protocol and the starting/ending numbers (to create any former one from the
latter ones)

Why is this important?
Applied Machine Learning D. Bonacorsi4

Efficient data representation [3/3]

The latter is important because what we did would not be strictly
necessary

• if you could quickly and easily memorise very long sequences, you would not
care much about the existence of a pattern in the second sequence. You
would just learn every number by heart, and that would be that.

• The fact that it is hard to memorise long sequences is what makes it useful to
recognise patterns

This is why we can make a very good use of a NN architecture that I
can be constrained during training: it pushes it to discover and
exploit patterns in the data.

Applied Machine Learning D. Bonacorsi5

Another example: pattern matching in chess

The relationship between memory, perception, and pattern
matching was studied in the early 1970’s [Ref-ChaseSimon]

• observation that expert chess players were able to memorise the positions of
all the pieces in a game by looking at the board for just five seconds, a task
that most people would find impossible

• However, this was the case when the pieces were placed only in realistic
positions (from actual games), not when the pieces were placed randomly.

• Ultimately, chess experts don’t have a much better memory than others; they
just see (chess) patterns more easily, thanks to their experience with the game.

Noticing patterns helps them to store information efficiently

The “logic” of the NN architecture we are discussing next is not far
from the core of this memory experiment..

Applied Machine Learning D. Bonacorsi6

Autoencoders (AEs)

A feed-forward NN with the output that is the same as the input

• said in this way, it sounds useless, right?

The AE:

• compresses the input into a lower-dimensional representation (aka “latent-
space representation” or “code”)

❖ The “code” can be thought of a compact “summary”, a “compression” of the input

• reconstruct the output from such representation

Applied Machine Learning D. Bonacorsi7

AE basic concepts

An AE consists of 3 components:

• encoder, code, decoder

Note that encoder and decoder do not talk to each other

• the encoder compresses the input and produces the code

• the decoder uses the code and “reconstructs the input”, yielding the output

So, to build an AE we need 1) an encoding method, 2) a decoding
method, 3) a loss function to compare the output with the target
Applied Machine Learning D. Bonacorsi8

input
code

output

AE basic concepts

An AE consists of 3 components:

• encoder, code, decoder

Note that encoder and decoder do not talk to each other

• the encoder compresses the input and produces the code

• the decoder uses the code and “reconstructs the input”, yielding the output

So, to build an AE we need 1) an encoding method, 2) a decoding
method, 3) a loss function to compare the output with the target
Applied Machine Learning D. Bonacorsi9

input
code

output

“AE is not gzip”

AEs can be thought as dimensionality reduction (compression)
algorithms, but with some peculiar properties

• data-specific: w.r.t. standard data compression algorithms, AEs learn features
specific for the given training data, so they are only able to meaningfully
compress data similar to what they have been trained on

• lossy: the AE’s output will be a close but somehow degraded representation of
the input

• {un-,self-}supervised: we can throw data to an AE and train it w/o any prior
action. No need for labels → un-supervised, but actually imprecise: self-
supervised, because they generate their own labels from the training dataset

Applied Machine Learning D. Bonacorsi10

AE architecture

Both encoder and decoder are FC FF ANN. Code is a single layer
of an ANN with the dimensionality of our choice

• code size (# nodes in code layer) is a hyperparameter we set before training

Applied Machine Learning D. Bonacorsi11

Requirement:
same

dimensionality of
input and output

Not a
requirement:

encoder/decoder
architectures are

mirrored

“Stacked” AE

Encoder Decoder

AE hyperparameters

Not so many:

• Code size: # of nodes in the code layer

❖ Smaller size → more compression

• # of layers: AE can be as deep as we like/need

• # nodes per layer: Usually, stacked-AE are like a sandwich, i.e. # nodes
decreases (increases) with each subsequent layer of the encoder (decoder)

• loss function: MSE or binary cross-entropy can be used (typically, the latter if
input values are in the range [0, 1])

AEs are trained the same way as ANNs

• via back-propagation and GD

Applied Machine Learning D. Bonacorsi12

Applied Machine Learning D. Bonacorsi13

Today: AE implementation in the code

Which input image can we choose for a demo?

Let’s implement a very simple AE to perform MNIST classification

• for educational purposes: same example we previously approached:

1. with basic ML models, and…

2. … with a CNN

Applied Machine Learning D. Bonacorsi14

Today: AE implementation in the code

Which input image can we choose for a demo?

Time to code!

You can follow these slides, and practice the code later, or you can
play on Colab in real time!

D. Bonacorsi15

Time to code!

http://bit.ly/Bertinoro1

If you are trying all this real-time during the workshop, this
means now you should go to colab and follow from there

AE implementation: an example

Applied Machine Learning D. Bonacorsi16

Applied Machine Learning D. Bonacorsi17

MNIST input is 28x28
images, vectorised into 784

bits long arrays

Our AE
architectural choices

Sigmoid as we need the outputs
to be between [0, 1] (input also in

the same range)

AE implementation: an example

Applied Machine Learning D. Bonacorsi18

Do you notice anything different
w.r.t Keras as we used it before?

Applied Machine Learning D. Bonacorsi19

Do you notice anything different
w.r.t Keras as we used it before?

Applied Machine Learning D. Bonacorsi20

Do you notice anything different
w.r.t Keras as we used it before?

①

②

Keras Functional API
The difference is that we used the Keras Functional API

• https://keras.io/guides/functional_api/

It is a way to create models in a more flexible way:

• it can handle models with non-linear topology, models with shared layers, models
with multiple inputs or outputs, ..

The main idea is that a DL model is usually a directed acyclic graph
(DAG) of layers, so the Keras Functional API is a way to build graphs of
layers.

Applied Machine Learning D. Bonacorsi21

Keras Sequential API

Keras Functional API

More verbose but more flexible (better for complex models). The output of Dense method is a
callable layer, i.e. I can easily grab parts of the model, and flexibly work with those onwards.

①

Model fit

{un-,self-}supervised: the targets of the AE are the same as the
input. That’s why we supply the training data as the target

Applied Machine Learning D. Bonacorsi22

②

Model summary and viz

Applied Machine Learning D. Bonacorsi23

plot_model (in keras.utils)

summary()

BTW.. about visualising ANN

Net2Vis: https://viscom.net2vis.uni-ulm.de

Applied Machine Learning D. Bonacorsi24

Bonus feature!

Applied Machine Learning D. Bonacorsi25

Our AE with Net2Vis

Bonus feature!

Code to cut&paste for Net2Vis

Applied Machine Learning D. Bonacorsi26

You can freely modify this file.
However, you need to have a function that is
named get_model and returns a Keras Model.
import keras as k
from keras import models
from keras import layers
from keras import utils

def get_model():
 input_size = 784
 hidden_size = 128
 code_size = 32

 input_img = k.Input(shape=(input_size,))

 hidden_1 = layers.Dense(hidden_size,
activation='relu')(input_img)
 code = layers.Dense(code_size,
activation='relu')(hidden_1)
 hidden_2 = layers.Dense(hidden_size,
activation='relu')(code)
 output_img = layers.Dense(input_size,
activation='sigmoid')(hidden_2)

 model = models.Model(input_img,
output_img)

 return model

Bonus feature!

Predict

We can run the AE on the test set simply by using the Keras predict
function of Keras.

For every image in the test set, we check the AE output. We expect
the output to be very similar to the input.

Applied Machine Learning D. Bonacorsi27

Not perfect, but not bad!
(given the simplicity of the

AE architecture)

Note the the handwritten “4”
which could be mistakenly

taken as a “9"

Sometimes very easy to debug an AE.. ;)

Applied Machine Learning D. Bonacorsi28

Ehm..

OK..

Shallow vs Deep AE

Applied Machine Learning D. Bonacorsi29

Shallow AE

Deep (well…) AE

Shallow vs Deep AE

Applied Machine Learning D. Bonacorsi30

Shallow AE

Deep (well…) AE

Check details of e.g. the “2”
in the two cases

QUIZ.. can you guess which AE arch gives me this?

Applied Machine Learning D. Bonacorsi31

QUIZ.. can you guess which AE arch gives me this?

Applied Machine Learning D. Bonacorsi32

SOLUTION(s):
(for example..)

Trainable params: 34,715,784Trainable params: 2,461,760

Basic: trainable params: 209,968, then…

More on AE architectural choice
We can make an AE very powerful by increasing # of layers, # nodes
per layer and (most importantly) the code size.

• higher values of these hyperparameters → AE will learn more complex codings

Careful about making it too powerful, or it will simply learn to copy its
inputs to the output, without learning any meaningful (latent)
representation. Not the right way to go, because:

• you do NOT need an ANN to get the identity function :)

• an AE that reconstructs the training data perfectly will be overfitting

→ “sandwich” AE architecture, with code size (deliberately) kept small

Code layer with lower dimensionality than the input data →
“undercomplete” AE: it won’t be able to directly copy its inputs to the
output, and will be forced to learn intelligent features.

• i.e. learn patterns (e.g. how “0" differs from “7”), and encode it in a compact form.
Random images will not be reconstructed well by an undercomplete AE, but in real
world images there is luckily a lot of correlations/dependencies, so it just works

Applied Machine Learning D. Bonacorsi33

A variety of AE techniques

The key is to force the AE to learn useful features.

Various ways to do so:

• by keeping the code size small (see previous slides)

• by adding random noise and forcing to recover the noise-free data (next)

• by using regularisation

Applied Machine Learning D. Bonacorsi34

Denoising AE (dAE)

The AE learns an intelligent representation of the input being forced
to do so by keeping the code layer small.

An AE can learn useful features by adding random noise to the
input and making it recover the original noise-free data

• in this case, a straight copy input-to-output will not work

• the AE is forced to identify the noise and subtract it, thus exposing the
underlying meaningful data

This is a Denoising AE.

Applied Machine Learning D. Bonacorsi35

We take the original images, add random Gaussian noise, and send
these images as input to the dAE

• in this way, the dAE does not see the original images at all

• we expect it to regenerate the noise-free original images, though

Applied Machine Learning D. Bonacorsi36

dAE implementation: an example

[See the code as of
how to generate noise]

dAE implementation: model creation and fit
As before, with only a change:

Applied Machine Learning D. Bonacorsi37

The input to the dAE is the noisy data.
The expected target is the original noise-free data

dAE implementation: results

Applied Machine Learning D. Bonacorsi38

Sparse AE (sAE)

Method: regularise the AE by using a “sparsity constraint”, such that
only a fraction of the nodes (“active nodes”) would have non-0
values

• how? add a penalty term to the loss function such that only a fraction of the
nodes become active.

This simple trick forces the AE to represent each input using a
combination of a smaller # of nodes (not all of them), but still
demands it to discover interesting structure in the data

• a plus: it works even if you want to keep the code size large, as only a small
subset of the nodes will be active at any time

Applied Machine Learning D. Bonacorsi39

NOTE: the final loss of the sAE
model will be higher than the
standard AE (due to the added
regularisation term), but that’s fine

Applied Machine Learning D. Bonacorsi40

Sparse AE (sAE): implementation

add the activity_regularizer parameter
and specifying the regularisation

strength (typically [0.001, 0.000001])

Applied Machine Learning D. Bonacorsi41

(Shallow) AE

Sparse AE

Sparse AE (sAE): results

Visualise the “sparsity” in sAE

Helpful to visualise encodings generated by the sAE to be indeed sparse

• check the distribution of code values in both models, for the images in the test set

Standard AE: mean 6.64, sAE: mean 0.76. A quite big reduction!

• definitely, a large chunk of code values in the sAE model are indeed 0, which is what
we wanted

• The variance of the sAE model is also fairly low

Applied Machine Learning D. Bonacorsi42

Concluding on AEs

Compared to CNNs, not so widely used in real-world applications..

• as a compression method, they don’t perform better than its alternatives

• their data-specificity makes them impractical as a general technique

But..

• … first of all you can use the power of CNN and AE together

• … and nevertheless, there are extremely interesting use-cases of AE
applications

Applied Machine Learning D. Bonacorsi43

①
②

Convolutional AE

If you are dealing with images, and you might need an AE (e.g. for
unsupervised pretraining or dimensionality reduction), but the AEs we
have seen so far will not work well (unless the images are very small)

• CNNs are far better suited than dense networks to deal with images

So, if you want to build an AE for images, you will need to build a
more complex architecture: a convolutional AE, built this way:

• the encoder is a regular CNN composed of convolutional layers and pooling
layers. It typically reduces the spatial dimensionality of the inputs (i.e., height
and width) while increasing its depth (i.e., the number of feature maps)

• the decoder must do the reverse (upscale the image and reduce its depth back
to the original dimensions), and for this you can use transpose convolutional
layers; alternatively, you could combine upsampling layers with convolutional
layers

❖ upsampling layers (UpSampling2D) simply double the dimensions of the input

❖ transpose convolutional layer (Conv2DTranspose) perform an inverse convolution operation

Applied Machine Learning D. Bonacorsi44

①

AEs use-cases

- Data denoising: we discussed this (for easy images, at least)

- Dimensionality reduction: visualising high-dimensional data is
challenging

❖ t-SNE is one of the most commonly used method but struggles with large number of dimensions
(typically above 32). AEs are used as a preprocessing step to reduce the dimensionality, and this
compressed representation is used by t-SNE to visualise the data in 2D space

- in the form of Variational Autoencoders (VAE): a more modern
and complex use-case of AEs

• w.r.t vanilla AEs - that learn an arbitrary function - VAEs learns the parameters
of the probability distribution modelling the input data. By sampling points
from this distribution we can also use the VAE as a generative model..

Applied Machine Learning D. Bonacorsi45

②

That’s it, 
for our Lab on AEs

46

