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[ credits to: A. Geron, “Hands-On Machine Learning With Scikit-Learn and Tensorflow” ]



Convolutional Neural Networks (CNNs)

CNNs emerged from the study of the brain’s visual cortex 

• not a new technique: used in image recognition since the 80’s 

• only recently: exponential increase in computational power + amount of training data  

• ⟹ boost for training DNNs ! 

CNNs have objectively managed to achieve superhuman performance 
on some complex visual tasks. They power: 

• image search services 

• self-driving cars 

• automatic video classification systems 

• … and more 

Moreover, CNNs are not restricted to visual perception: 

• they are also successful at many other tasks, such as voice recognition and natural 
language processing (NLP)
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A couple of typical (visual) tasks

Example: 

• object detection (classifying multiple objects in an image and placing 
bounding boxes around them) 

• semantic segmentation (classifying each pixel according to the class of the 
object it belongs to)
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Receptive fields and hierarchy of neurons
Crucial insights into the structure of the visual cortex from a series of 
experiments by Hubel and Wiesel in 1958 and 1959, on cast (and a few years 
later on monkeys) 

• Nobel Prize in Physiology or Medicine in 1981 for their work 

In brief, most relevant observations: 

• “neurons in general get active on small visual areas”: many neurons in the visual cortex 
have a small local “receptive fields”, i.e. they react only to visual stimuli located in a 
limited region of the visual field (see next). The receptive fields of different neurons may 
overlap, of course, and altogether they tile the whole visual field 

• “neurons get active on patterns”: some neurons react only to images of horizontal lines, 
while others react only to lines with different orientations (two neurons may have the same 
receptive field - previous bullet - but react to different line orientations) 

• “some neurons work on larger visual areas: they have larger receptive fields, and they react 
to more complex patterns that are combinations of the lower-level patterns 

These observations led a classification of higher-level and lower-level neurons, 
and to the idea that higher-level ones are based on the outputs of neighboring 
lower-level ones. This powerful architecture is able to detect all sorts of 
complex patterns in any area of the visual field.
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More brain modules, increased complexity
In summary: 

• most biological neurons in the visual cortex respond to specific visual patterns 
in small regions of the human visual field (“receptive fields”) 

• as the visual signal makes its way through consecutive brain modules, neurons 
respond to more complex patterns in larger receptive fields
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the local receptive fields of 4 neurons are 
represented by the red dashed circles

notice that each neuron is 
connected only to a few neurons 

from the previous layer



CNN vs fully connected

Before continuing… 

Why not simply use a deep neural network (from the MLP model) 
with fully connected layers for image recognition tasks?  

Unfortunately, although this works fine for small images, it breaks 
down for larger images, as a huge number of parameters would be 
required 

• e.g. MNIST has 28x28 images. A 100×100 image has 10,000 pixels, so with a 
NN with 1,000 neurons in the first layer and beyond, one easily get to millions 
of connections, and that’s just the first layer 

• CNNs solve this problem using partially connected layers and weight sharing
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Convolutional layers

The neurons in the first convolutional layer are not connected to 
every single pixel in the input image, but only to pixels in their 
receptive fields 

• before CNN, it was like the former, instead 

In turn, each neuron in the second convolutional layer is connected 
only to neurons located within a small area in the first layer 

Let’s go for a pictorial view. 
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Input layer
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Input layer

Conv layer 1
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Input layer

Conv layer 1

Conv layer 2
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1024 pixels
(b/w)

3072 pixels
(color)

ogni gatto, ogni posa, ogni 
angolazione o porzione..

A pictorial summary of CNNs
Convolutional layers extract (“filters”) characteristics from the images
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Used for “computer 
vision” (but not only)



Even in this simplified and intuitive explanation, one can grasp that 
this architecture allows the network to concentrate on small low-
level features in the first hidden layer, then assemble them into 
larger higher-level features in the next hidden layer, and so on.  

• This hierarchical structure is common in real-world images, which is one of the 
reasons why CNNs work so well for image recognition 

There is MUCH more, but this might be enough to give it a try in 
colab.. 
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Time to code!10 minutes



Coding a simple CNN model

The model type that we will be using is based on the Keras 
Sequential API (i.e. the easiest way to build a model in Keras) 

• it allows you to build a model layer by layer, sequentially 

• use the `add()` function to add layers to the model
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Our first 2 layers are Conv2D layers (ingest 2D matrices as input) 

• first Conv2D layer has 64 nodes, second has 32 nodes 

❖ The # of nodes in a layer can be adjusted to be higher or lower, depending on the size of the dataset 
and of the type of problem to solve. 

• kernel_size = the size of the filter matrix for our convolution (kernel_size = 3 → 
3x3 filter matrix) 

• activation = the activation function for the layer → Rectified Linear Unit, proven 
to work just fine in most NN applications 

• Note that the 1st layer (and only that one) also takes in an input shape, i.e. the 
shape of each input image (28,28,1 as seen earlier).
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Coding a simple CNN model



In-between the Conv2D layers and the Dense layer, there is a Flatten layer 

• it serves as a connection between the convolution and dense layers. 

Dense is the layer type we will use for the output layer 

• it is a standard layer type that is used in many cases for NNs 

• Note we have 10 nodes in our output layer, not unexpectedly given the problem: one 
for each possible outcome (0–9)! 

• softmax = activation function used in the Dense layer  

❖ it makes the output sum up to 1 so the output can be interpreted as probabilities. The model will then make 
its prediction based on which option has the highest probability
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Coding a simple CNN model



Compiling the CNN model

Compiling the model takes 3 hyper-parameters: optimizer, loss and 
performance metric. 

• the optimizer controls the learning rate. We will be using adam as our 
optimizer 

❖ The adam optimizer adjusts the learning rate throughout training, and it is generally a good choice 
to use for many cases 

• the categorical_crossentropy will be out loss function 
❖ this is the most common choice for classification. A lower score will indicate that the model is 

performing better 

• to make things easier to interpret here, we will just use the `accuracy` 
performance metric in this example, to see the accuracy score on the 
validation set when we train the model
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CPU vs GPU exercise

Run it on Colab !
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Make prediction

Check the actual predictions that the model can make for new data 
by using the predict function 

• it will give an array with 10 numbers, i.e. the probabilities that the input image 
represents each digit (0–9). The sum of each array equals 1 (since each number 
is a probability). The array index with the highest number represents the 
model prediction. 

❖ NOTE: no new data here, so we run this on some test data, just for education..
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The model predicts 7, 2, 1, 0 for 
the first four images. 

Let’s compare this with the 
actual labels (the truth):



That’s it, 
for our Lab on CNNs
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