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GAN examples

Check these out:

e https://thiscatdoesnotexist.com/: generated images of cats

* https://thispersondoesnotexist.com/: generated images of human faces

* https://thisrentaldoesnotexist.com/: generated images of Airbnb apartments

(i.e. the above are all websites that display images generated by a
recent GAN architecture called StyleGAN)
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https://thisrentaldoesnotexist.com/

I;

ENTIRE GUEST SUITE

Lovely&chic familiar apartment

New York .ﬂ

O 5guests O 3 bedrooms O 3 beds O 2 baths

Double Room Housing Close to shops, bars, cafes etc...St all around the city Close (It's

near part of the city, ten minutes to Fricks, whijftdoormants, both withing Mal park build
by Tram or B 30 mins to India. The apartment is on the third floor (with all new

applian , 24(7). It has a cosy, silent flat (50-S2) in 1935 with kitchen, tv, separate

toilet. Very spacious apartment with floor to ceiling up the comfort and quiet, this
charming is the real Austin timington while keeping or large people who like our beautiful
two bathroom apartment. | had all the amenities of home a It is spacious and has high
ceilings with lots of charm. The house has a very large master bedroom/bathroom,
living/dining, shower room, kitchen and bathroom. Guests will need to regaired friendly
reason or prefer.
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https://thisrentaldoesnotexist.com/

ENTIRE GUEST SUITE

Beautiful house in West
London.

Chicago

O 8 guests O 3 bedrooms O 4 beds O 2 baths

In the heart of Olympic porch, just 25 mins to 3rd St Spacious, quiet neighborhood, 15
minute walk from Staning bus station. Excited by Doctor Station and the purple retail of

Read more about the space v

Contact host
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https://thisrentaldoesnotexist.com/

ENTIRE GUEST SUITE

SYDNEY 2 BED NEW HOME
(224) HQ

San Diego

Alicia

O 4 guests O 2 bedrooms O 2beds O 2 baths

A beautiful fully refurbished, very central 3-room and/or any areas of my homeont
district. A large window and tall ceilings and the guest have access to the entire apt.
Please read beerfalong other party: -Be sure to chat speaker for stays or me may be
rather all guests looking for small children Or my guests during your stay. . Ideal for a
more dream available. | MOMP, the room can slee Thanks for wedding-periods/holidays
when possible. Best Catford from home in LKMB power also wheelchair, north of the
property. Quiet and comfortable en-suite room. Cable TV with 4 seater toiletries. There
is another bathroom for the extra bed. We also have taken two extra charges from the
free high-speed wifi Radio additionally Gidead, and add not due to the internet for Water
fiin and Plaase kaan tha nlace avarv thraa dave I'll ha iust Nasnrasen mav ha sharina
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Intuition on GANs - part 1

But first - as usual - let’s develop our intuition.

— the banknote counterfeiter analogy
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Random Noise

Real Data
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Intuition on GANs - part 2

GANSs are intimidating. Like RL, they are closely connected to our
attempt to understand (and reproduce) basic mechanisms of human
thinking and learning.

How do we learn? complicated.. but read this algo:
1. | learn the skill
2. | am evaluated. | get feedback on what | am still missing

3. | re-learn with a focus on the missing skill, and unlearn things that were not
contributing towards the skill | want

4. goto 1 until | have mastered the skill

This is (roughly) how GANs work.
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GAN's paper

GAN is an unsupervised DL technique proposed by |.Goodfellow et
al in 2014

* https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Generative Adversarial Nets

( same Ian as in: )

Ian J. Goodfellow; Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair; Aaron Courville, Yoshua Bengio®

.

‘ Département d’informatique et de recherche opérationnelle s N .
; Université de Montréal Yo = E EP LYE,'A RNI NG ;
: Montréal, QC H3C 3J7 | ', A:td Ooodbz:‘/‘m. Bengio,

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of DD making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to § everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.
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Groundbreaking idea

Adversarial training (i.e. training competing NNs) is widely

considered as one of the most important ideas in the field over
recent years

e In 2016, Yann Lecun said that it was “the most interesting idea in the last 10
years in Machine Learning”

Although the idea got researchers excited almost instantly, it took a
few years to overcome some of the difficulties of training GANSs.

Like many great ideas, it seems simple in hindsight: make NNs

compete against each other in the hope that this competition will
push them to excel.
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GAN: Generator anc

GAN foresees a NN called Generator that fights against an
adversarial network called . Hence the name.

* Generator and Discriminator are both multilayer perceptrons (MLP)

Generator (Gen)

* Obijective: generate data that are indistinguishable from the training data

* How? The checkpoint is to demonstrate ability to trick the D

* Obijective: identify if the data from the G is real or fake

* How? D gets 2 sets of input: one comes from the training dataset, the other
one is the modelled dataset generated by G.
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Discriminative vs Generative models

Discriminative models — e.g.: Decision Trees, SVMs, ..

they model the conditional probability, i.e. p(y | x)

in doing this, that do not make any assumption about the input distribution

e.g. in the classification case, a discriminative classifier learns the boundary
between the classes, and - given the data - predicts the class to which a
particular data belongs

+ given an “informative” set of features (e.g. age, weight, eating habits, ..) a discriminative model
can predict e.qg. if the person will develop diabetes or not

discriminative models do not perform well on outliers
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Discriminative vs Generative models

Generative models = e.g.: Naive Bayes, Restricted Boltzmann
Machine, Deep Belief nets, ..

* they learn the joint probability P(x, y) of the input data x and output data y.
They make prediction based on p(x | y), i.e. given output label y they
reconstruct input x

» generative models learn the distribution of the individual classes. In this sense,
generative models help to reconstruct the input data

= given some data it identifies the latent feature representation. If a person has diabetes, then what
are the features that can help identify its presence?

* generative models perform well on outliers

* generative models can generate new data points from the sample data
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GAN flow

Gen tries to mimic the input image as close as
possible to the real image from the training
data. Gen’s goal is to to fool Dis

Input to Gen is random noise created
from the training data (e.g. image)

feedba ck

Z 2

Random Noise '

Discriminator classification
error

Real Data £ eedba k
C,

X

Dis gets two inputs. One is the real data from
training dataset and other is the fake data
from the Gen. Dis’s goal is to identify which
input is real and which is fake.
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GAN training: in words..

Because the GAN is composed of two networks with different
objectives, it cannot be trained like a regular NN.

Each training iteration is divided into two phases.

Phase 1: we train the discriminator.

* A batch of real images is sampled from the training set and is completed with
an equal number of fake images produced by the generator.

* The labels are set to 0 for fake images and 1 for real images, and the

discriminator is trained on this labeled batch for one step, using the binary
cross-entropy loss.

* Importantly, BP only optimizes the weights of the discriminator during this
phase.
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GAN training: in words..

Phase 2: we train the generator.
« We first use it to produce another batch of fake images

 then, once again the discriminator is used to tell whether the images are fake or
real

* This time we do not add real images in the batch, and all the labels are set to 1
(real): in other words, we want the generator to produce images that the
discriminator will (wrongly) believe to be real!

* Crucially, the weights of the discriminator are frozen during this step, so
backpropagation only affects the weights of the generator.

NOTE: The generator never actually sees any real image, yet it gradually
learns to produce convincing fake images! All it gets is the gradients
flowing back through the discriminator

» Fortunately, the better the discriminator gets, the more information about the real

images is contained in these secondhand gradients, so the generator can make
significant progress.
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GAN applications



GAN applications

The good:
* Generating a high resolution image from a low resolution image
» Colorisation
» Generate descriptions based on images
* Powerful image editing (e.g., replacing photo bombers with realistic background)
 Turning a simple sketch into a photorealistic image
 Predicting the next frames in a video
* Augmenting a dataset (to train other models)
» Generating other types of data (such as text, audio, and time series)

* |dentifying the weaknesses in other models and strengthening them

The not-so-good:

 deep fakes, etc
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Exercise with GAN



GAN implementation to attack MNIST

Continue to the MNIST data again - for educational purposes and
for a chance to compare approaches on the same problem...

.. and develop a GAN to identify the latent feature
representation, and explore it to see how good a Gen can be in
generating real-looking MNIST digits and winning over the Dis.
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GAN implementation

Real Data
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GAN implementation: Gen

def create generator():
generator=Sequential ()
generator.add(Dense(units=256,input dim=100))
generator.add(LeakyReLU(0.2))

generator.add(Dense(units=512))
generator.add(LeakyReLU(0.2))
Spits out 784..

generator.add(Dense(units=1024))
generator.add(LeakyReLU(0.2))

generator.add(Dense(units=7/84, activation='tanh'))

generator.compile(loss="'binary crossentropy', optimizer=adam optimizer())
return generator

g = create generator()
g.summary( )

MLP with simple Dense layers activated by LeakyReLU and tanh

37 D. Bonacorsi



GAN implementation: Gen

input:

(None, 100)

dense_13_input: InputLayer
output:

(None, 100)

l

input: | (None, 100)

dense_13: Dense

output: [ (None, 256)

l

input:
leaky_re_lu_10: LeakyReLU

(None, 256)

output:

(None, 256)

l

input: | (None, 256)

dense_14: Dense

output: | (None, 512)

l

input:

(None, 512)

leaky_re lu_11: LeakyReLU

output:

(None, 512)

Layer (type) Output Shape Param #
dense_1 (Dense)  (Neme, 256) 25856
leaky re lu 1 (LeakyReLU) (None, 256) 0

dense 2 (Dense) (None, 512) 131584
leaky re lu 2 (LeakyReLU) (None, 512) 0

dense_ 3 (Dense) (None, 1024) 525312
leaky re lu 3 (LeakyReLU) (None, 1024) 0

dense 4 (Dense) (None, 784) 803600

Total params: 1,486,352
Trainable params: 1,486,352
Non-trainable params: 0

Gen: all trainable params
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l

input: (None, 512)

dense_15: Dense

output: | (None, 1024)

l

input:
leaky_re lu_12: LeakyReLU

(None, 1024)

output:

(None, 1024)

l

input: | (None, 1024)

dense_16: Dense

output: | (None, 784)
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GAN implementation: Dis

def create discriminator():
discriminator=Sequential()
discriminator.add(Dense(units=1024,input dim=784))

discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3)) K\\\

discriminator.add(Dense(units=512)) Discriminator will take 784 as
discriminator.add(LeakyReLU(0.2)) input_dim: valid for both real data and
discriminator.add(Dropout(0.3)) for the images generated by the Gen

discriminator.add(Dense(units=256))
discriminator.add(LeakyReLU(0.2))

discriminator.add(Dense(units=1, activation='sigmoid'))

discriminator.compile(loss='binary crossentropy', optimizer=adam optimizer())
return discriminator

d = create discriminator()

Again a MLP.
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GAN implementation: Dis

Layer (type) Output Shape Param #
dense_17 (Dense)  (Nome, 1024) 803840
leaky re lu 13 (LeakyReLU) (None, 1024) 0
dropout 1 (Dropout) (None, 1024) 0
dense 18 (Dense) (None, 512) 524800
leaky re lu 14 (LeakyReLU) (None, 512) 0
dropout 2 (Dropout) (None, 512) 0
dense 19 (Dense) (None, 256) 131328
leaky re lu 15 (LeakyReLU) (None, 256) 0
dense 20 (Dense) (None, 1) 257
Total params: 1,460,225
Trainable params: 1,460,225
Non-trainable params: 0
Dis: all trainable params
40

input: | (None, 784)
dense_17_input: InputLayer
output: | (None, 784)
input: | (None, 784)
dense_17: Dense
output: | (None, 1024)
input: | (None, 1024)
leaky_re_lu_13: LeakyReLU
output: | (None, 1024)
input: | (None, 1024)
dropout_1: Dropout
output: | (None, 1024)
input: , 1024
dense_18: Dense o (None )
output: | (None, 512)
input: one, 512
leaky_re_lu_14: LeakyReLU P M )
output: | (None, 512)
input: | (None, 512)
dropout_2: Dropout
output: | (None, 512)
input: | (None, 512)
dense_19: Dense
output: | (None, 256)
input: one, 256
leaky_re_lu_15: LeakyReLU P M )
output: | (None, 256)
input: | (None, 256)
dense_20: Dense
output: (None, 1)
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GAN implementation: Gen+Dis=GAN

We now create the GAN where we combine the Gen and Dis.

- discriminator.trainable=False :

gan input = Input(shape=(100,))
X = generator(gan input)

gan output = discriminator(x) The Gen output is fed to the Dis
gan = Model (inputs=gan input, outputi=gan output)
gan.compile(loss='binary crossentropy\, optimizer='adam')

return gan

We input the noised image of
shape 100 units to the Gen

gan = create gan(d,qg)

NOTE: when we train the Gen
we will freeze the Dis (see next)
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GAN implementation: Gen+Dis=GAN

!
1| leaky_re_lu_12: LeakyReLU
i

fnput | (None, 1024) |1
utput: | (None, 1024) |1

Layer (type) Output Shape Param #
input_1 (Inputlayer)  (Neme, 100) 0
sequential 4 (Sequential) (None, 784) 1486352
sequential 5 (Sequential) (None, 1) 1460225

Total params: 2,946,577
Trainable params: 1,486:.352zuuuuns
Non-trainable paramsé 1,460,225

one, 1024)

\
(None, 1024) | 1

I
utput: | (None, 1024) | 1

X

NOTE: total # of params is the sum, but
trainable params are only those of the Gen

42

one, 1024)

one, 512)

one, 512)

one, 512)

one, 512)

ne, 256)

ne, 256)

input: | (None, 512) |
ut: | (None, 512) | |

(see next)

input: | (None, 256) | |
ut: | (None, 256) | |
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GAN implementation: Gen+Dis=GAN

input_1: InputLayer

input:

(None, 100)

output:

(None, 100)

; sequential 4

. input: | (None, 100)
dense_13_input: InputLayer
output: | (None, 100)
input: | (None, 100)

dense_13: Dense

output:

(None, 256)

l

leaky_re_lu_10: LeakyReLLU

input:

(None, 256)

output:

(None, 256)

l

dense_14: Dense

input:

(None, 256)

output:

(None, 512)

l

leaky_re lu_11: LeakyReLLU

input:

(None, 512)

output:

(None, 512)

l

A 4

input:

(None, 512)

dense_15: Dense

output:

(None, 1024)

:

leaky_re_lu_12: LeakyReL.U

input:

(None, 1024)

output:

(None, 1024)

l

dense_16: Dense

input:

(None, 1024)

(None, 784)

sequential_5

dense_17_input: InputLayer

(None, 784)

(None, 784)

l

input:

(None, 784)

dense_17: Dense

output:

(None, 1024)

'

leaky re lu_13: LeakyReLU

input:

(None, 1024)

output:

(None, 1024)

|
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input: | (None, 256)
dense_20: Dense

output: | (None, 1)

A\ S 1

input: | (None, 1024) I

dropout_1: Dropout i
output: | (None, 1024) I

I

I

I

I

input: | (None, 1024) I

dense 18: Dense I
output: [ (None, 512) |

I

I

3 I

input: | (None, 512) :

leaky re lu_14: LeakyReLU — |
output: | (None, 512) |

I

I

‘ I

) input: | (None, 512) :
dropout_2: Dropout ]
output: | (None, 512) ]

I

I

‘ I

input: | (None, 512) :

dense_19: Dense :
output: | (None, 256) :

I

I

Y I

input: | (None, 256) :

leaky re lu_15: LeakyReLU X
output: | (None, 256) | |

I

I

I

I

I

I

I
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GAN implementation: training

/

def training(epochs=1, batch_size=128):

Careful about # epochs

#Loading the data load MNIST data
(X _train, y train, X test, y test) = load data()

batch_count = X train.shape[0] / batch_size

# Creating GAN

generator = create_generator()
discriminator = create discriminator() build the GAN
gan = create_ gan(discriminator, generator)

create Gen, Dis, then

for e in range(1,epochs+1l ): use tgdm to make our loops

print("Epoch 3d” %e) show a useful progress bar

for _ in tgdm(range(batch_size)):

#generate random noise as an input to initialize the generator
noise= np.random.normal(0,1, [batch size, 100])

Create random noise to

(... cont'd ...)) initialise the Gen
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GAN implementation: training

Fake! Real!

2)

, _ , Gen generates fake MNIST digits
ST images from noised input

# Genefate fake ) )
= generator.predict(noise) from the noised mput

generated ima

andom set of real images
image” batch =X train[np.random.randint(low=0,high=X train.shape[0],size=batch size)]

#Construct different batches of real and fake data create batches of data that

X= np.concatenate([image batch, generated images]) cxmnahnfakeinnagesffonn(}en
and real images from MNIST,

# Labels for generated and real data to be fed to Dis

y _dis=np.zeros(2*batch size)

y_dis[:batch_size]=0.9 create a target variable for the real and fake images

#Pre train discriminator on fake and real data before starting the gan.
discriminator.trainable=True
discriminator.train on batch(X, y dis)

T e

We pre-train the Dis on some fake and real data (X) giving labels to
do so (y_dis), before starting the GAN (in which Dis training is OFF).
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GAN implementation: training

We take the noised input of the
o Gen and trick it as real data

#Tricking the noised input of the Generator as real data
noise= np.random.normal(0,1, [batch size, 100])
Yy _gen = np.ones(batch size)

# During the training of gan,

# the weights of discriminator should be fixed.
#We can enforce that by setting the trainable flag
discriminator.trainable=False

#training the GAN by alternating the training of the Discriminator
#and training the chained GAN model with Discriminator’s weights freezed.
gan.train_on_batch(noise, y_gen)

if e==1or e % 20 == 0:
plot generated images(e, generator)

\ When we train the GAN we need to
freeze the weights of the Dis. GAN is

trained by alternating the training of the
training(400,128) \ Dis (previous slide) and the training the
\ For every 20 epochs, chained GAN model with Dis weights
Launch the training we plot/save the frozen (this slide)
for 400 epochs generated images

( WCT: about 21 mins)
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results

10N

GAN implementat

.
.

n

Epoch 1
One zoomed
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GAN implementation: results
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Epoch 100

One zoomed in:
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GAN implementation: results
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Epoch 400

One zoomed in:

]
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That's it,
on GANSs



Laate it
for our Lab on GANs



