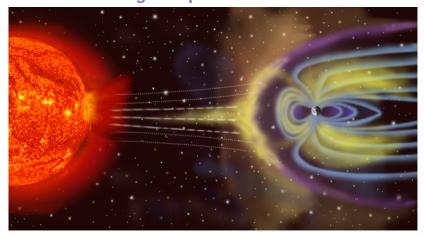
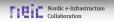


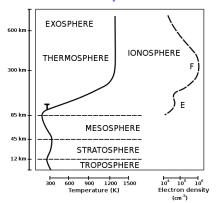
NeIC EISCAT_3D support project: Nordic computing challenge

John White NeIC


Introduction

- Solar-terrestrial connection and EISCAT
- EISCAT 3D project
- Nordic e-Infrastructure Collaboration (NeIC)
- EISCAT 3D Support Project (E3DS)
- **EISCAT 3D Network Plan**
- **EISCAT 3D Computing**
- EISCAT 3D Data Handling




Solar wind and magnetosphere

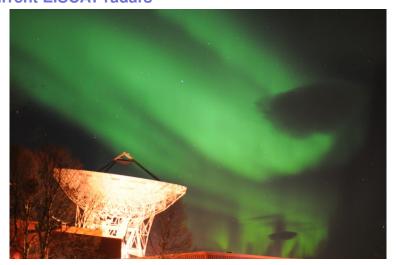
Earth's Atmosphere

Wikimedia Commons

Atmosphere

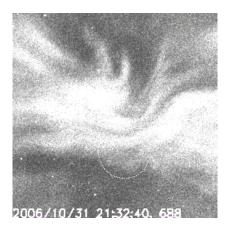
- "E" region absorbs x-rays.
- "F" region absorbs UV.
- Aurora 90-200 km altitude.

Incoherent scatter radar

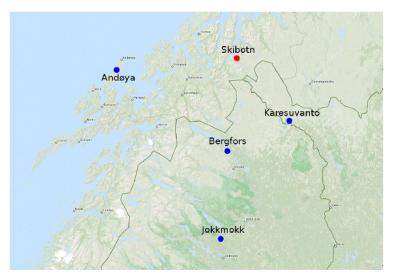

- Ionospheric electron density
- Ion and electron temperature
- Doppler velocity of ions

EISCAT

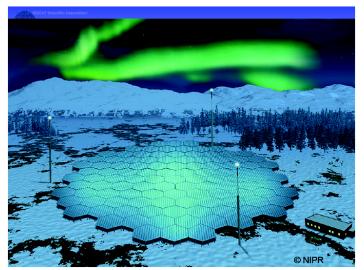
European Incoherent SCATter Scientific Association

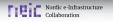


Fine structure of aurora in real time



ASK 3×3 degrees 31 Oct 2006 Hanna Dahlgren, KTH


EISCAT_3D Project



EISCAT_3D Project

Nordic e-Infrastructure Collaboration (NeIC)

"The NeIC facilitates the development and operation of advanced IT tools and services in areas of importance to Nordic researchers."

- Pool Competencies
 - Map skills, identify and prioritise needs.
- Share Resources
 - · Launch pilot projects to establish ambition levels
- Secure Long-Term Funding
 - Map funding sources, adapt to unaligned funding periods
- Strengthen Stakeholder Dialogue
 - Map stakeholders and partnerships

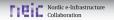
Nordic e-Infrastructure Collaboration (NeIC)

NeIC 'Owners'

MINISTRY OF EDUCATION, SCIENCE AND CULTURE

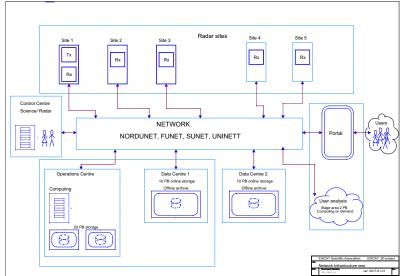
NelC EISCAT 3D Support Project (E3DS)

- Project started January 15th 2015.
 - Basis: Letters of Interest to NeIC from EISCAT (2012, 2014)
 - Decision to launch project by NeIC Board (2014)
- Resources committed to project: EISCAT and NeIC Also, CSC, Tromsø and Umeå
- Steering group (representing partners that have committed resources):
 - Yasunobu Ogawa, EISCAT-Japan, NIPR
 - Craig Heinselman, EISCAT
 - · Gudmund Høst, NeIC



NelC EISCAT 3D Support Project (E3DS)

- Project participants:
 - Project manager (0.5 FTE): John White, NeIC.
 - · Ingemar Häggström, EISCAT, Kiruna
 - Anders Tjulin, EISCAT, Kiruna
 - Assar Westman, EISCAT, Kiruna
 - Carl-Fredrik Enell, EISCAT, Kiruna
 - Sathyaveer Prasad, EISCAT, Kiruna
 - Tor Johansen, University of Tromsø
 - Harri Hellgren, EISCAT, Kiruna
 - Ari Lukkarinen, CSC
 - Sari Lasanen, University of Oulu
 - · Mattias Wadenstein, University of Umeå
 - Åke Sandgren, University of Umeå
 - Juha Vierinen, University of Tromsø
 - Ilkka Virtanen, University of Oulu


E3DS Project Goals

- Find workable and cost-efficient solutions for the EISCAT 3D computing, storage and archive.
- Facilitate an effective dialogue on the implementation of EISCAT 3D with the stakeholders in the Nordic countries.
- Make best use of the existing expertise in the Nordic countries for implementing (the e-Infrastructure of) EISCAT 3D.

EISCAT 3D Wide-Area Schematic

EISCAT 3D computing

- On-site computing infrastructure (per radar site):
 - Reduce data rates to manageable levels (19 Tb/s → 53 Gbit/s);
 - Two stages of beam forming.
 - Sub-arrays 109 × 5.0 TFLOPS. (FPGA)
 - Overall beam former 22 TFLOPS.
 - 86 TB RAM/SSD ring buffer.
 - Process computer (standard data products) 55 TFLOPS.
- Off-site data-processing:
 - Operations Centre will coordinate the radar operations and observation modes:
 - Monitor production of standard data products from sites:
 - Generate non-standard products, multi-static data products and meta-data:
 - Requires ≈ 500 TFLOPS.
 - Located within existing e-infrastructure?
- Control centre located functionally within Operations Centre.
 - · At Skibotn during commissioning, subsequently at Kiruna.

EISCAT 3D data

- **Must** transfer at least 2 PB/y (rises to 3.5 PB/y) to archive storage.
- **Must** hold 5 years of data online for user access (\approx 10 PB).
- Scalable storage and computing capacity for standard operation, image processing, search engines and visualisation tools.
- Long term storage for basic ionospheric parameters over two consecutive solar cycles.
- Located in existing e-infrastructure?
- Interface to EISCAT 3D users through a portal.
- **Must** have redundant archives at two locations.
- Additional mirror sites outside Nordic countries.

Data Management System Requirements

- Must provide a global namespace over all data archives.
- Must scale to the size of the overall EISCAT 3D data set of \approx 200 PB.
- **Must** dynamically move frequently accessed data to faster access storage.
- Must dynamically move less accessed data to slower access storage.
- **Must** accept credentials to authenticate and authorize users to access data.
- The same Data Management system should be used at each EISCAT 3D Data Centre and the Operations Centre.

EISCAT 3D Network Traffic Matrix

	From								
To (below)	Ops Centre	Data 1	Data 2	Skibotn	Bergfors	Karesuvanto	Jokkmokk	Andoya	Sum
Ops Centre	N/A	1	1	53	53	53	53	53	267
Data 1	2	N/A	0.5	0	0	0	0	0	3
Data 2	2	0.5	N/A	0	0	0	0	0	3
Skibotn	1	0	0	N/A	0	0	0	0	1
Bergfors	1	0	0	0	N/A	0	0	0	1
Karesuvanto	1	0	0	0	0	N/A	0	0	1
Jokkmokk	1	0	0	0	0	0	N/A	0	1
Andoya	1	0	0	0	0	0	0	N/A	1
UK (RAL)	0	1	1	0	0	0	0	0	2
Japan (NIPR)	0	1	1	0	0	0	0	0	2
Sum (Out)	9	3.5	3.5	53	53	53	53	53	

All numeric values are in Gb/s. A red (green) box indicates a (non) redundant path. Orange data transferred outside the Nordic area.

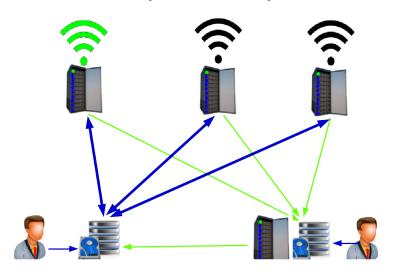
Site, Operations Centre and user computing

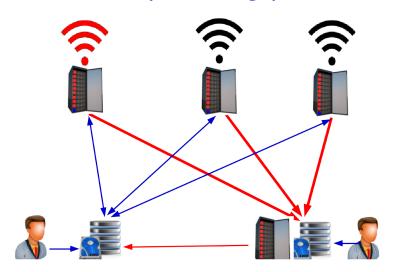
- Site computing:
 - 2nd beam former: ≈ 22 TFL OPS
 - Beam forming performed in software.
 - Process computer: ≈ 55 TFLOPS
 - Discussions so far: no need for specialized HW (FPGA,GPU etc).
- Operations Centre computing:
 - Fstimated at: ≈ 500 TFLOPS
 - 3-D operations: tightly coupled cluster.
 - Discussions so far: no need for specialized HW (FPGA,GPU etc).
- User analysis computing:
 - Estimated at: ≈ 50 TFLOPS
 - Discussions so far: usage of GPU possibly beneficial.
 - Analysis computing profiles vary widely.

EISCAT 3D Integrated computing

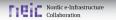
- Site computing:
 - Virtualized cluster: ≈ 80 TFL OPS
 - Beam forming containers/VMs.
 - Process computing containers/VMs.
 - User analysis computing containers/VMs.
- Operations Centre computing:
 - Virtualized cluster: ≈ 500 TFL OPS
 - 3D operations containers/VMs.
 - User analysis computing containers/VMs.
 - "Controller" node for virtualized cluster.
- User analysis computing:
 - User analysis containers/VMs distributed through Operations Centre and sites
 - User analysis jobs interruptible by radar state.
 - Analysis computing profiles matched bycontainer/VM.
- Virtualized e-infrastructure run by national provider(s).

Nordic Tier-1 (NT1)


- CERN/LHC Tier 1 computing in the Nordic countries. Distributed site.
 - Bergen, Oslo
 - Umeå, Linköping
 - · Copenhagen, Helsinki
- Project hosted within NeIC.
 - \approx 12 people. 50% average.
 - Since 2010, part of EGI.
 - · Serves ALICE, ATLAS.
 - Compute and Storage resources.
 - Networking by NorduNet.


e-infrastructure 3-D Operations: Low power

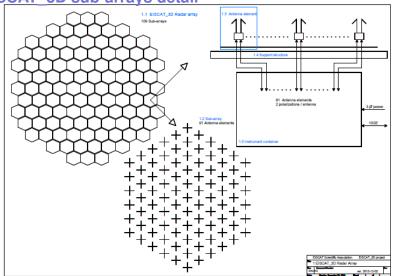
e-infrastructure 3-D Operations: High power



Concluding Remarks

- EISCAT 3D project on schedule.
 - Test sub-array this summer 2017
- E3DS project has aided in requirements for:
 - Operations Centre
 - Data Centre
 - Site and Operations Centre computing:
 - · Take advantage of virtualization to operate as single cluster.
 - · Cluster operations by national provider(s).
 - · EISCAT 3D relieved from cluster operations.
 - · Spare cycles used for EISCAT 3D user analysis or other.
- Use existing expertise to aid EISCAT 3D to perform science.

Thank you


Questions?

Written in LATEX

EISCAT 3D sub-arrays detail

E3DS Project Documents

- Project documents released:
 - https://wiki.neic.no/wiki/EISCAT_3D_Support#Documents
 - MA-1: Requirements and their implications for EISCAT 3D data handling and processing at the operations centre
 - MA-2: Requirements and their implications for EISCAT 3D data handling and processing at the data centre
 - MA-3: EISCAT 3D Wide-Area Network Plan
 - MA-4: Recommended solutions for the operation and data centres.
 - MB-1: On-site computing requirements for EISCAT 3D test sub-array
 - MB-2: Consultation on selecting architecture/technology for the on-site computing related to a test-subarray
 - MB-4: Consultation on the procurement plan for EISCAT 3D core
 - MC-1: Test sub-array sub-systems and interfaces
 - MD-3: "Report on solutions for the data archive, including a description on how users can get access to adequate computing facilities".