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enable a more effective and flexible resource allocation and utilization in open 
clouds such as OpenStack

cloud service developed in the context of the INDIGO-DataCloud European project 
which aims to develop a new cloud software platform for the scientific community
● https://www.indigo-datacloud.eu/

Overview

Synergy

Main objective



ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 3/16

● resource allocation model: static partitioning
● based on granted and fixed quotas (one per project)
● the quotas cannot be exceeded
● the quotas cannot be shared among projects

● scheduler too simple
● based on the immediate First Come First Served (FCFS)
● user requests are rejected if not immediately satisfied

The issue
● In the current OpenStack model:

● data center: very low global efficiency and increased cost

● 20 years old problem we solved by adopting batch systems

● enhancement of our data center resources utilization from <50 to 100%

● INDIGO addresses this issue through Synergy
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● It is a cloud service designed for executing tasks in OpenStack
● It is composed by a collection of specific and independent pluggable 

functionality (managers) executed periodically or interactively through 
a RESTful API

Synergy

Synergy
manager

Interaction 
between managersInteraction 

with OS services
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class class ManagerManager(Thread):(Thread):

def getName(self): #returns the manager namedef getName(self): #returns the manager name

def getStatus(self): #returns the manager statusdef getStatus(self): #returns the manager status

def isAutoStart(self): #is AutoStart enabled or disabled?def isAutoStart(self): #is AutoStart enabled or disabled?

def setup(self): #allows custom initializationdef setup(self): #allows custom initialization

def destroy(self): #invoked before destroyingdef destroy(self): #invoked before destroying

def def executeexecute(self, cmd): #executes user command synchronously(self, cmd): #executes user command synchronously

def def tasktask(self): #executed periodically at fixed rate(self): #executed periodically at fixed rate

The manager interface

Any new manager can be easily implemented by extending a Synergy python 
abstract base class “Manager”:

synchronous and asynchronous activities are respectively implemented by the last 
two methods: execute() and task().
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● cloud resources can now be shared among different OpenStack projects
● overcomes the static partitioning limits
● maximizes the resource utilization

● shared resources are fairly distributed among users and projects
● user priority
● project share

● requests that can’t be immediately fulfilled are enqueued (not rejected!)

How Synergy addresses the OS issues

● By implementing six specific managers which provide an advanced resource 
allocation and scheduling model
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Synergy scheduler managers
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Resource allocation model

● With Synergy the OpenStack projects can now consume extra shared 
resources in addition to those statically assigned

● Projects can access to two quota kinds:

● private quota: 
● the standard (i.e. fixed and statically allocated) OpenStack quota

● shared quota:
● extra resources shared among projects and handled by Synergy
● its size can change dynamically: amount of resources not statically allocated
● the user requests that cannot be immediately satisfied are inserted in a persistent 

priority queue



ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 9/16

The Shared Quota

….
….

● The shared quota is a subset of the total resources not statically allocated

● its size is calculated as the difference between the total amount of cloud 
resources and the total resources statically allocated to the private quotas

● It is periodically calculated by Synergy

● Only the projects selected by the administrator can access to the shared 
quota beside to their own private quota

Pr_1 quota
Pr_1 quota Shared QuotaShared QuotaPr_2 quota

Pr_2 quota Pr_N quota
Pr_N quota

Pr_3 quota
Pr_3 quota

statically allocated resources                                     unallocated resources

total resources
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The scheduling model

● list of projects allowed to access the shared quota

● definition of shares (%) on resource usages for the selected projects (e.g. 
project A=70%, project B=30%)

● the maximum allowed lifetime (e.g. 48 hours) of the relevant instances
● VMs and Containers (instantiated via nova-docker)
● this is needed to enforce the fair-sharing

● Fair-share algorithm: SLURM Priority Multifactor
● https://slurm.schedmd.com/priority_multifactor.html

● shared resources fairly distributed among users according to specific fair-
share policies defined by the administrator:
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● Synergy will not replace any existing OpenStack service (e.g Nova)
● it may complement their functionality as an independent service

● no changes in the existing OpenStack components are required

● both resource allocation models coexist

Remark
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Testing setup

● Synergy was first deployed at INFN-Padova OpenStack production site of 
the EGI Federated Cloud

● the goal: to test its behavior and stability under real usage conditions typical of 
a production environment

● EGI Fed Cloud infrastructure at INFN-Padova:

● 1 controller and 6 compute nodes (centos7, Liberty)

● total capacity: 144 VCPUs, 283 GB of RAM and 3.7 TB of block storage

● Resource allocation and the project’s shares were defined as:

80

20

total resources

static
shared 70

30

shared resources

shares
prj A
prj B
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Testing results

● automatic robot instantiates VMs at the same constant rate on both projects 
by using different users

● testing session: > 20,000 VMs executed over two days
● Cirros images with different flavors
● VM lifetime limited to 5 min to speed up testing

● measured project resource usage: as expected (70% and 30%) within 1%
● user share tested in two configurations:

● same share for all users
● different share for each user: confirmed the expected limitation of the SLURM Multifactor 

algorithm, as documented in https://slurm.schedmd.com/fair_tree.html 

● tests coexisted and did not interfere/degrade the activities of other 
production projects/VOs (not involved in fair-share computation)
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The development status
● Synergy released by INDIGO

● support for Liberty, Mitaka and Newton

● next release: March 2017

● Integrated in Launchpad and the OpenStack Continuous Integration system

● https://launchpad.net/synergy-service

● https://launchpad.net/synergy-scheduler-manager

● https://review.openstack.org

● Code in GitHub

● https://github.com/openstack/synergy-service

● https://github.com/openstack/synergy-scheduler-manager

● Documentation

● https://indigo-dc.gitbooks.io/synergy/content

https://launchpad.net/synergy-scheduler-manager
https://github.com/openstack/synergy-service
https://indigo-dc.gitbooks.io/synergy/content
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Next steps
● Implement a complete test suite

● test Synergy in the bigger CNRS's production site

● update Synergy for supporting the latest OpenStack versions

● improve the fair-share algorithm by implementing the SLURM Fair Tree

● improve the resource usage calculation by considering even CPU performance 
measured with HEPSPEC 2006 (HS06) benchmark (not only the CPU wall-clock 
time)

● the ultimate goal is to have Synergy in the Official OpenStack distribution
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Questions?
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