
Synergy
a new approach for optimizing the resource usage in OpenStack

Lisa
Zangrando

INFN Padova

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 2/16

enable a more effective and flexible resource allocation and utilization in open
clouds such as OpenStack

cloud service developed in the context of the INDIGO-DataCloud European project
which aims to develop a new cloud software platform for the scientific community
● https://www.indigo-datacloud.eu/

Overview

Synergy

Main objective

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 3/16

● resource allocation model: static partitioning
● based on granted and fixed quotas (one per project)
● the quotas cannot be exceeded
● the quotas cannot be shared among projects

● scheduler too simple
● based on the immediate First Come First Served (FCFS)
● user requests are rejected if not immediately satisfied

The issue
● In the current OpenStack model:

● data center: very low global efficiency and increased cost

● 20 years old problem we solved by adopting batch systems

● enhancement of our data center resources utilization from <50 to 100%

● INDIGO addresses this issue through Synergy

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 4/16

● It is a cloud service designed for executing tasks in OpenStack
● It is composed by a collection of specific and independent pluggable

functionality (managers) executed periodically or interactively through
a RESTful API

Synergy

Synergy
manager

Interaction
between managersInteraction

with OS services

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 5/16

class class ManagerManager(Thread):(Thread):

def getName(self): #returns the manager namedef getName(self): #returns the manager name

def getStatus(self): #returns the manager statusdef getStatus(self): #returns the manager status

def isAutoStart(self): #is AutoStart enabled or disabled?def isAutoStart(self): #is AutoStart enabled or disabled?

def setup(self): #allows custom initializationdef setup(self): #allows custom initialization

def destroy(self): #invoked before destroyingdef destroy(self): #invoked before destroying

def def executeexecute(self, cmd): #executes user command synchronously(self, cmd): #executes user command synchronously

def def tasktask(self): #executed periodically at fixed rate(self): #executed periodically at fixed rate

The manager interface

Any new manager can be easily implemented by extending a Synergy python
abstract base class “Manager”:

synchronous and asynchronous activities are respectively implemented by the last
two methods: execute() and task().

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 6/16

● cloud resources can now be shared among different OpenStack projects
● overcomes the static partitioning limits
● maximizes the resource utilization

● shared resources are fairly distributed among users and projects
● user priority
● project share

● requests that can’t be immediately fulfilled are enqueued (not rejected!)

How Synergy addresses the OS issues

● By implementing six specific managers which provide an advanced resource
allocation and scheduling model

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 7/16

Synergy scheduler managers

Queue
Manager

Queue
Manager

AMQP

Quota
Manager

Quota
Manager

FairShare
Manager

FairShare
Manager

Nova
Manager

Nova
Manager

Keystone
Manager

Keystone
Manager

Synergy
RESTFulRESTFul

Scheduler
Manager

Scheduler
Manager

keystonekeystone

novanova

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 8/16

Resource allocation model

● With Synergy the OpenStack projects can now consume extra shared
resources in addition to those statically assigned

● Projects can access to two quota kinds:

● private quota:
● the standard (i.e. fixed and statically allocated) OpenStack quota

● shared quota:
● extra resources shared among projects and handled by Synergy
● its size can change dynamically: amount of resources not statically allocated
● the user requests that cannot be immediately satisfied are inserted in a persistent

priority queue

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 9/16

The Shared Quota

….
….

● The shared quota is a subset of the total resources not statically allocated

● its size is calculated as the difference between the total amount of cloud
resources and the total resources statically allocated to the private quotas

● It is periodically calculated by Synergy

● Only the projects selected by the administrator can access to the shared
quota beside to their own private quota

Pr_1 quota
Pr_1 quota Shared QuotaShared QuotaPr_2 quota

Pr_2 quota Pr_N quota
Pr_N quota

Pr_3 quota
Pr_3 quota

statically allocated resources unallocated resources

total resources

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 10/16

The scheduling model

● list of projects allowed to access the shared quota

● definition of shares (%) on resource usages for the selected projects (e.g.
project A=70%, project B=30%)

● the maximum allowed lifetime (e.g. 48 hours) of the relevant instances
● VMs and Containers (instantiated via nova-docker)
● this is needed to enforce the fair-sharing

● Fair-share algorithm: SLURM Priority Multifactor
● https://slurm.schedmd.com/priority_multifactor.html

● shared resources fairly distributed among users according to specific fair-
share policies defined by the administrator:

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 11/16

● Synergy will not replace any existing OpenStack service (e.g Nova)
● it may complement their functionality as an independent service

● no changes in the existing OpenStack components are required

● both resource allocation models coexist

Remark

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 12/16

Testing setup

● Synergy was first deployed at INFN-Padova OpenStack production site of
the EGI Federated Cloud

● the goal: to test its behavior and stability under real usage conditions typical of
a production environment

● EGI Fed Cloud infrastructure at INFN-Padova:

● 1 controller and 6 compute nodes (centos7, Liberty)

● total capacity: 144 VCPUs, 283 GB of RAM and 3.7 TB of block storage

● Resource allocation and the project’s shares were defined as:

80

20

total resources

static
shared 70

30

shared resources

shares
prj A
prj B

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 13/16

Testing results

● automatic robot instantiates VMs at the same constant rate on both projects
by using different users

● testing session: > 20,000 VMs executed over two days
● Cirros images with different flavors
● VM lifetime limited to 5 min to speed up testing

● measured project resource usage: as expected (70% and 30%) within 1%
● user share tested in two configurations:

● same share for all users
● different share for each user: confirmed the expected limitation of the SLURM Multifactor

algorithm, as documented in https://slurm.schedmd.com/fair_tree.html

● tests coexisted and did not interfere/degrade the activities of other
production projects/VOs (not involved in fair-share computation)

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 14/16

The development status
● Synergy released by INDIGO

● support for Liberty, Mitaka and Newton

● next release: March 2017

● Integrated in Launchpad and the OpenStack Continuous Integration system

● https://launchpad.net/synergy-service

● https://launchpad.net/synergy-scheduler-manager

● https://review.openstack.org

● Code in GitHub

● https://github.com/openstack/synergy-service

● https://github.com/openstack/synergy-scheduler-manager

● Documentation

● https://indigo-dc.gitbooks.io/synergy/content

https://launchpad.net/synergy-scheduler-manager
https://github.com/openstack/synergy-service
https://indigo-dc.gitbooks.io/synergy/content

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 15/16

Next steps
● Implement a complete test suite

● test Synergy in the bigger CNRS's production site

● update Synergy for supporting the latest OpenStack versions

● improve the fair-share algorithm by implementing the SLURM Fair Tree

● improve the resource usage calculation by considering even CPU performance
measured with HEPSPEC 2006 (HS06) benchmark (not only the CPU wall-clock
time)

● the ultimate goal is to have Synergy in the Official OpenStack distribution

ISGC2017, 5-10 March 2017, Taipei TW <lisa.zangrando@pd.infn.it> 16/16

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

