

International Symposium on Grids & Clouds 2017

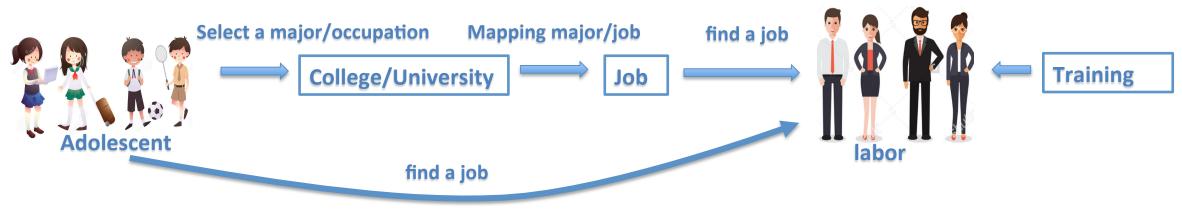
Occupation recommendation with major programs for adolescents

Ankhtuya Ochirbat Prof. Timothy K.Shih

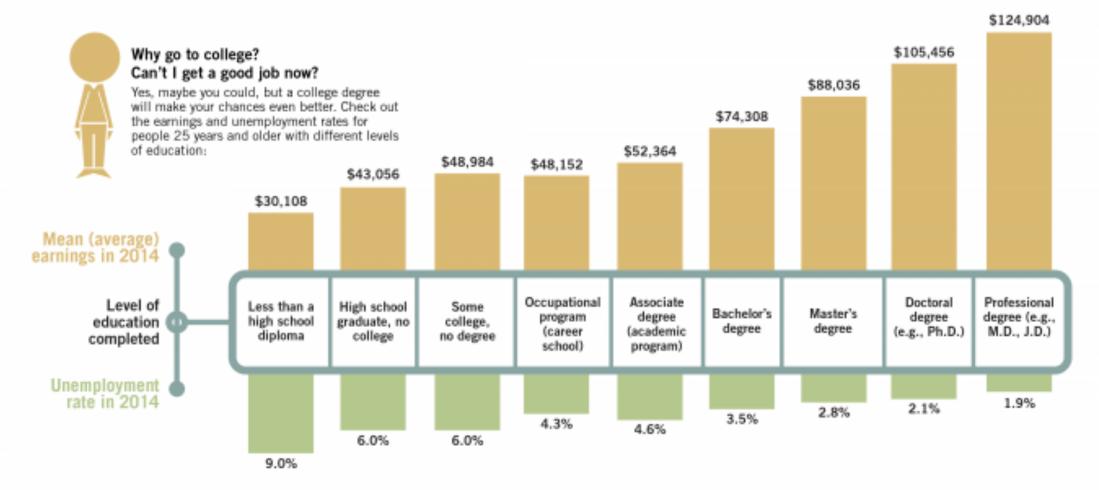
Presenter: O.Ankhtuya

Outline

- Introduction
- Problem Statement
- Data Collection
- Methods
- Result
- Conclusion


Introduction

• Young people in high school or collage make critical decisions regarding what to study and which **career** path to pursue.


- Many of them end up switching to other majors because of **mismatching major choice** and **lack of processing information** through the professional study.
 - Such changes are wasteful in time and resources and they produce emotional and economical stresses.

Academic program/college major

- Adolescents first intend and select the **occupation** that they will work through it in the future.
- But the some **occupations** are not clear **to map into the academic program** to study or vice versa.

Why go to college?

Source: Bureau of Labor Statistics, Current Population Survey, unpublished tables 2015

5

Problem Statement

- But the main issue of difficulty making the **decisions** of **major choices** for the students is a lack of knowledge and information about **majors and its mapping to occupations**.
- Hence, it is essential to build

Automatic Recommendation System.

Related works (1/3)

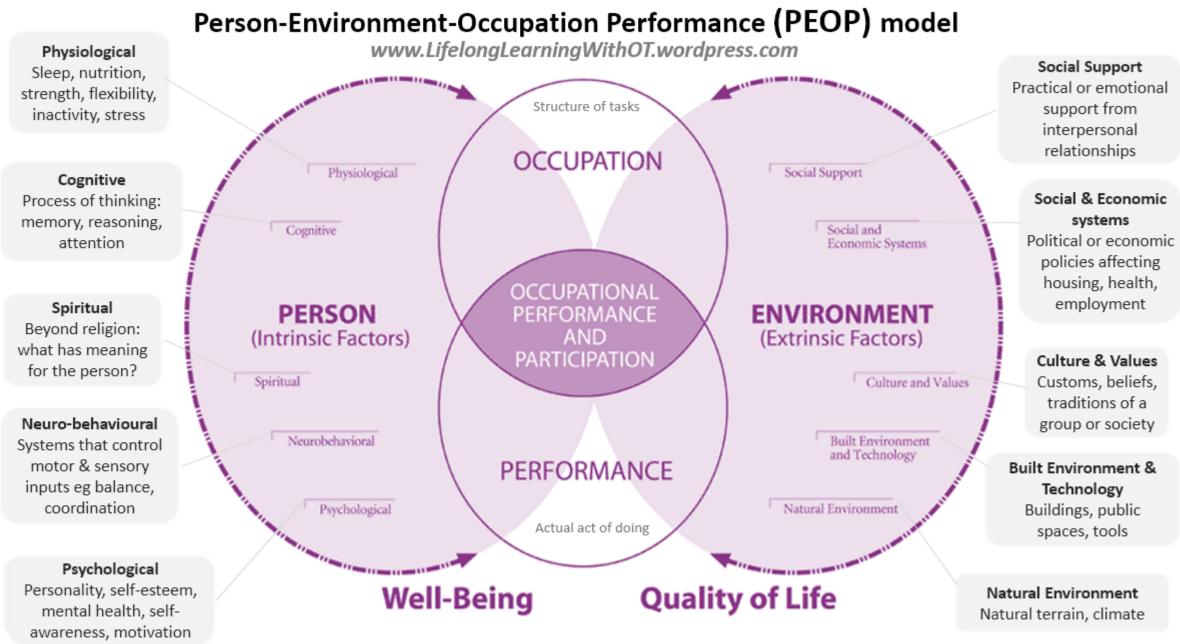
- D. Tsogzolmaa, S.Delgermaa, and P.Ulziisaikhan (2013) investigated how to choose major properly among high school students in Mongolia.
 - > 27.4% of students answered choosing the major by their interest,
 - > 52.9% of students replied the major choice made by family member or relatives' suggestion, and
 - > 15.3% of students answered that they would consider a labor market, a possibility of the finding the job as well as other factors.

Related works (2/3)

- According to the **M.Erdenechimeg (2013)** study showed that
 - > 4.8% of students vocational training center,
 - > **91.2%** of students college/university.
- But in the real case, **43%** of high school graduates in **2013 year** were **enrolled in colleges or universities**, the National statistical office of Mongolia reported.

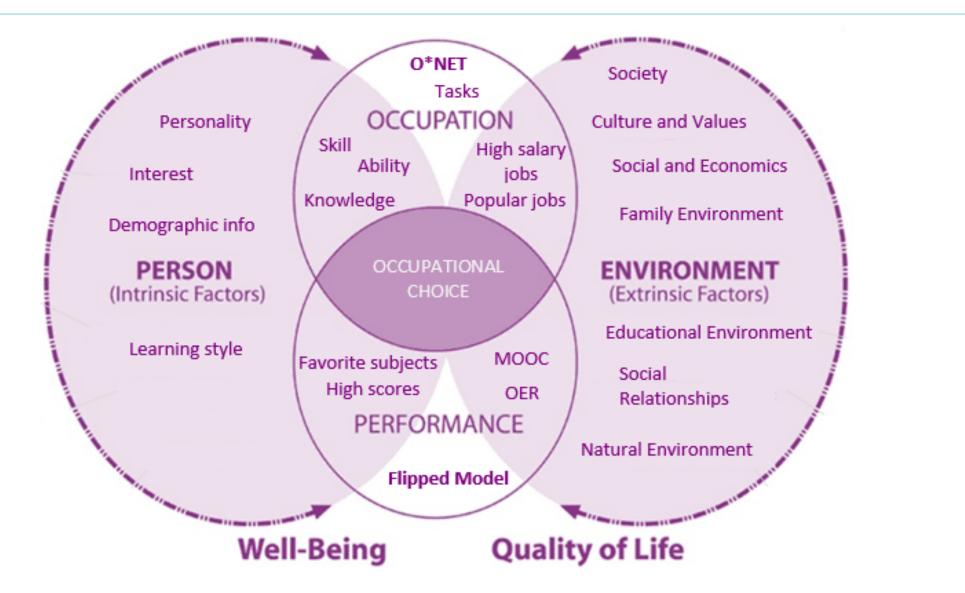
Related works (3/3)


- B.Bolormaa, B. Oyunsuren, Ch. Altangerel, and Ch. Tsolmon (2015) concluded that 20.7% of 324 students have not yet chosen the major; the reason is that students have a lack of occupational information a lot, and schools have not provided the guidance and counseling.
- Hence, they recommend that **Online automate system**, which can provide occupational information including contexts, requirements, tasks and competence needed for the particular majors/occupations and the guidance/counseling for students are needed.

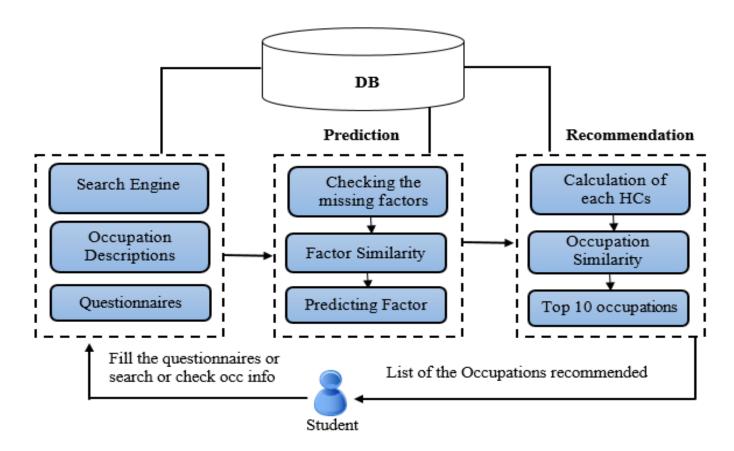

What is Recommender techniques?

Recommender techniques are information agents that attempt to predict which items out of large pool a user may be interested in and recommend the best ones to a target user. Examples:

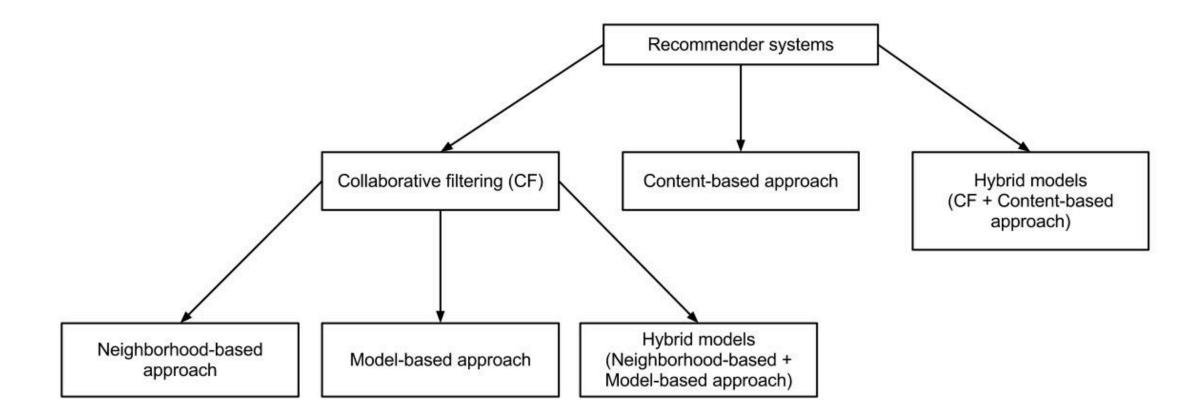
Recommender Systems



References:


Christiansen CH, Baum CM & Bass-Haugen J. (2005). Occupational therapy: Performance, participation and well-being (3rd ed). Thorofare NJ: SLACK incorporated Duncan EES (2012) Foundations for Practice in Occupational Therapy (5th Ed) Edinburgh: Churchill Livingstone

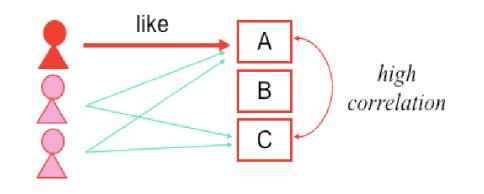
Case study: PEOP model & Occupational choice


Occupation Recommendation

• Occupation Recommender System (ORS) is to assist adolescents in discovering the occupation interests.

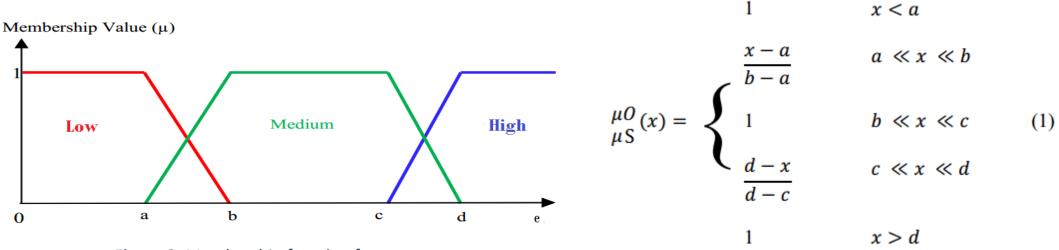
Methods

• Recommender Techniques category:



Collaborative Filtering (CF)

- CF techniques use the datasets of preferences for **items** by **users** to **predict** additional topics or products the active user might like.
- CF consist of three main categories:
 - > memory-based,
 - > model-based, and
 - > hybrid CF algorithms


Collaborative Filtering

- Memory-based Collaborative Filtering
 - It utilizes the entire user(student)-item(occupation) dataset to generate a prediction.
 - > Uses user-item ratings matrix
 - Makes item-to-item correlations (similarity)
 - Finds items that are highly correlated
 - Recommends items with highest correlation

Data normalization

• I converted those scores into **fuzzy values** in range [0,1] that can be representing in graphical view which is a membership function using Trapezoid function.

Figure 3. Membership function for interests of students and occupations

Similarity computation

• **Fuzzy similarity** measures a similarity between item *i* and *j* is given by

$$sim(i,j) = \frac{\sum_{k=1}^{m} \min(x_{ik}, x_{jk})}{\sum_{k=1}^{m} \max(x_{ik}, x_{jk})}$$

Where j = 1,..,n n = total numbers of occupation m = number of factors in vocational interest j = is the current student x_i, x_j=Scores of student and occupation in interest (6)

Prediction/Recommendation computation

- **Prediction: weighted sum** method computes the **it**.
 - Each rating is weighted by the corresponding similarity $S_{i,N}$ between items *i* and *N*. $R_{u,N}$ is the rating of user *u* on item *N*. Prediction $P_{u,i}$ as

$$P_{u,i} = \frac{\sum_{all \ similar \ items, N}(s_{i,N} * R_{u,N})}{\sum_{all \ similar \ items, N}(|s_{i,N}|)}$$

• Top-N recommendation:

Algorithm 1: Top n occupation recommendation algorithm

Inputs: studentID, occupations, n, factors Output: Top-n recommended occupations for studentID

- 1: for every occupation i derived from questionnaire for studentID
- for every occupation j in database
- compute a similarity ss between i and j
- add studentID's preference for j, weighted by ss, to a running average
- 5: return the top-n occupations, ranked by weighted average

(7)

Model-based CF

• **Model-based CF** algorithms involve building a model based on the dataset of ratings.

Regression model.

Regression model

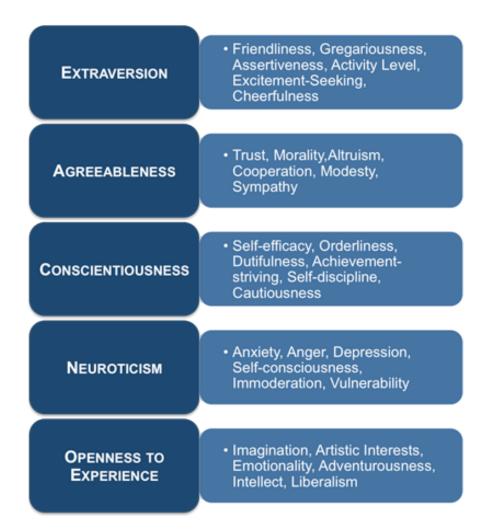
- **The model** is developed using **regression analysis** to find patterns based on training data.
- Vocational interests (six factors RIASEC) are predicted by using personality and learning style of students in (10) (15).

R = 0.47 * openness + 0.06 * sensory + 0.07 * visual + 1.02	(10)
I = 0.61 * openness + 0.05 * visual + 1.17	(11)
A = 0.78 * openness + 0.06 * visual + 0.66	(12)
s = 0.34 * Extraversion + 0.19 * Agreeableness + 0.14 * Consciousness + 0.27 * neuroticism + 0.36 * openness + 0.07 * active - 1.01	(13)
E = 0.35 * Extraversion + 0.20 * neuroticism + 0.47 * openness + 0.04 * active + 0.03 * visual - 0.44	(14)
C = 0.35 * Extraversion + 0.23 * neuroticism + 0.42 * openness + 0.06 * active + 0.04 * visual - 0.38	(15)

> Variables associated with adolescents include:

- Demographic Information;
- Personality;
- Interests;
- Learning style; and
- Intended major;

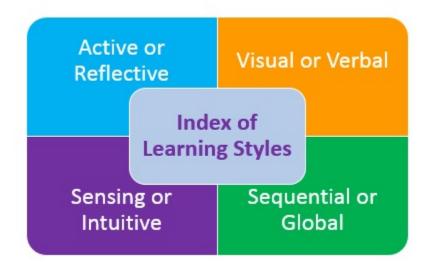
Welcome to OCR


Please provide your general information below:

Lastname:	Lastname					
Firstname:	Fistname					
Gender:	Male Female					
Grade:	10z					
Suggested major by parent:	Accountants					
Intendend major:	Software engineers					
	Submit Reset					

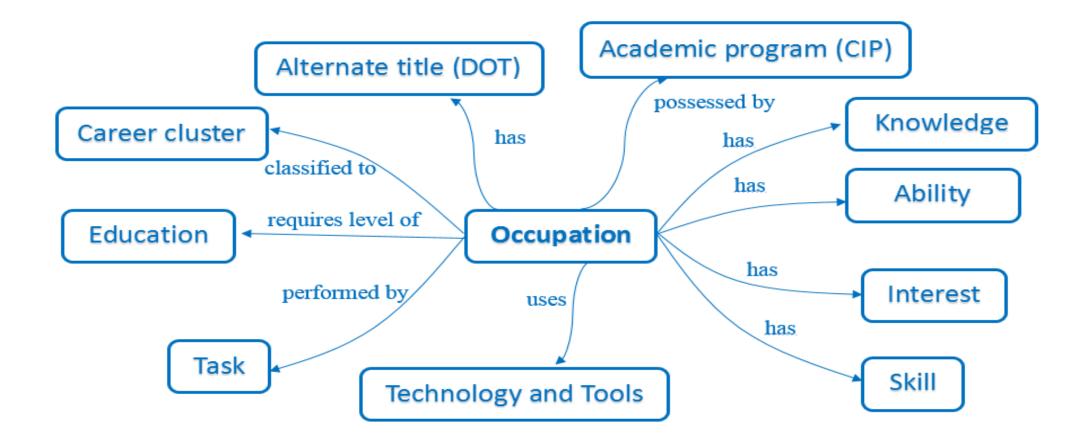
• Participants

- > 190 students were participated in the study.
 - This study was carried out during the first semester of the 2014/2016 academic year in Mongolia.
 - **81** in grade 10, **107** in grade 11, and 2 in grade 12.
 - The participants' age range is from 15 to 19 years.
 - Female = 107 and male = 80


- Personality Big Five Inventory (BFI - Goldberg, 1992, 1993)
 - The BFI has the 44 questions with responses made on a Likert scale format ranging from 1 = strongly disagree to 5 = strongly agree.

• Index of Learning style

(ILS - Soloman & Felder, 1999)


- People take in and process information in different ways based on their individual preferences.
- > ILS contains 44 **two choices questions**.
- > 4 dimensions

- Vocational Interest:
 - Holland code model
 - (**RIASEC** Holland, 1985a, b, 1997; Holland & Gottfredson, 1992)
 - It has the **106-item** with responses made on a **5-point scale** (strongly dislike to strongly like). There are **six types**.
 - All occupations can be classified according to their alignment with these six types.

Data Collection - Occupation

How to connect and measure the correlation between student and occupation?

• Vocational Interest (Holland code model) RIASEC - 6 factors

Occupation description				Range: 1-7				
	1					ţ		
ocode	title	r	i.	а	S	е	С	
11-1011.00	Chief Executives	1.3	3 2.00	2.67	3.67	7.00	5.33	
11-1011.03	Chief Sustainability Officers	1.0	0 4.33	2.67	2.33	7.00	4.33	
11-1021.00	General and Operations Managers	1.3	3 1.33	1.00	3.33	7.00	3.67	
11-1031.00	Legislators	1.0	3.67	3.67	4.67	7.00	3.00	
11-2011.00	Advertising and Promotions Managers		7 2.00	5.33	2.33	7.00	4.67	
11-2011.01	Green Marketers	1.0	5.33	4.33	2.33	5.33	3.00	
11-2021.00	Marketing Managers	1.0	2.33	3.67	2.67	7.00	5.33	
11-2022.00	Sales Managers	3.0	0 2.00	2.00	3.67	7.00	4.67	
11-2031.00	Public Relations and Fundraising Managers	1.3	3 1.33	5.00	3.67	7.00	3.67	
11-3011.00	Administrative Services Managers	2.0	2.33	1.00	2.67	7.00	5.33	
11-3021.00	Computer and Information Systems Managers	4.0	0 4.33	1.67	1.67	6.67	5.33	
11 2021 01	Traceurers and Centrellers	1.0	7 2 67	1.00	2.67	6.00	7.00	

Student li	ntere	st fro	om Q	uesti	onna	iire
studentID	I.	ί.	а	S	е	С
669	3.74	2.81	4.06	4.10	3.63	3.67
673	3.32	3.69	3.18	3.60	2.95	3.73
677	3.37	3.88	3.76	3.75	3.21	3.53
681	3.95	3.69	3.41	3.90	3.53	3.73
685	3.53	3.81	3.94	4.40	3.42	3.73
689	2.68	2.88	3.82	3.40	3.47	2.73
693	2.74	3.69	4.29	4.10	3.79	3.60
697	3.16	2.56	3.24	3.50	2.79	3.67
701	4.53	4.63	4.65	4.85	4.05	4.40
705	3.63	4.50	3.88	4.50	4.00	3.27
709	3.79	4.00	4.12	4.40	4.00	3.67
713	3.53	3.88	4.06	4.45	4.00	4.27
717	3.37	3.63	3.47	3.60	2.84	3.67
701	2.05	2 60	2 /7	2.00	2 /7	2.47

ange: 1-5

29

Result (1/5)

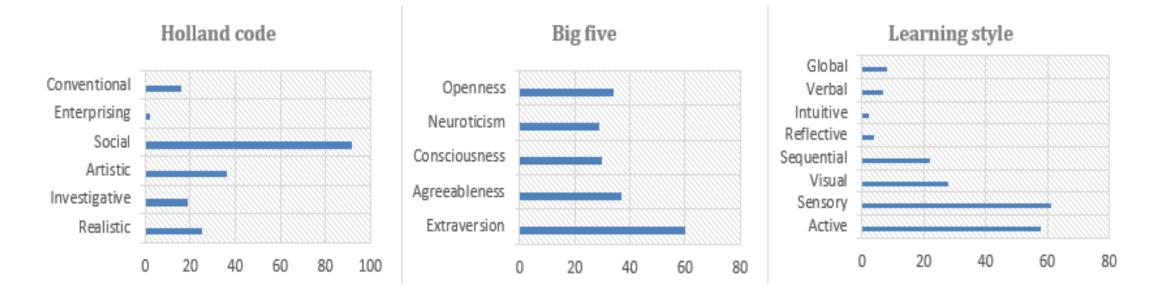


Figure 17 Frequencies of students on Vocational interests, Big five personalities, and Learning styles

Result (2/5)

Table 9 Pearson's correlations between suggested, intended, predicted, and recommended majors

Majors	1.	2.	3.	4.
1. Suggested major by parents	1			
2. Intended major of students	.362**	1		
3. Predicted major	020	.164*	1	
4. Recommended major by Holland model	.086	.141	.228**	1

p* < .05. *p* < .01.

Result (3/5)

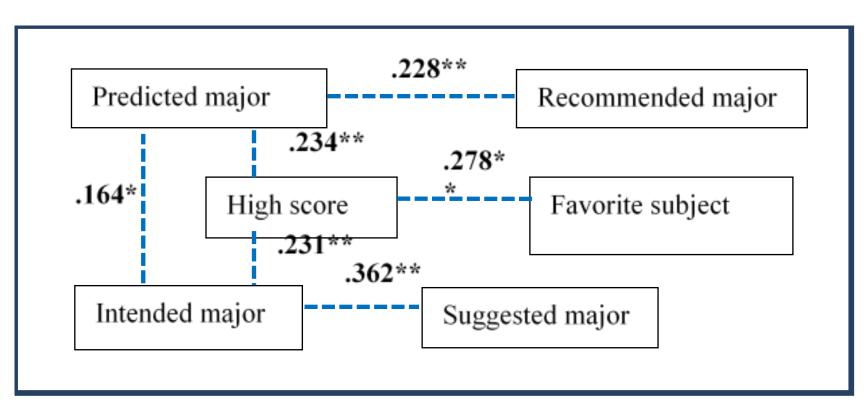
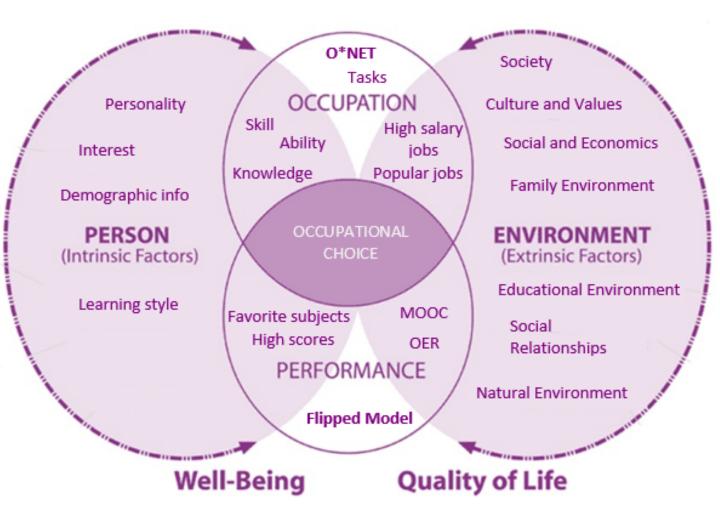


Figure 19 Correlations between high score, favorite subject and four kinds of majors. Dashed lines indicate the correlations. (*p < .05, **p < .01)

Result (4/5)

Table 10 Influence of the choice of the major				
Questions of the influence of the major choice of the student	Yes	No	Not filled	
Will you discuss with your parents when you make a critical decision?	133 (70%)	20 (10.5%)	37(19.5%)	
Will you follow the suggestion of your parent, if your parent asks you to	20 (15 50/)	121 (640/)	20 (20 50/)	
choose their suggested major, even you don't like?	30 (15.5%)	121 (64%)	39 (20.5%)	
Why did you choose this intended major?			37 (19.4%)	
According to my interest	130			
Easily finding a job	41			
Family (specially parent) suggested	38			
Nowadays this major is very popular	32			
High salary	21			
Teacher suggested	3			
My friends are going to choose	0			


Result (5/5)

Method	R	Ι	А	S	Е	С	Total
Regression Model	0.22	0.12	0.06	0.08	0.13	0.11	0.1215
HC Model	0.17	0.13	0.11	0.09	0.14	0.12	0.1261

Table 5: Influence of the choice of the major. Lower value is better result. RMSE is used.

Future Works

- Open Government Data
- MOOC
- Open Educational Resource
 - Wikipedia
- Linked Open Data

