

ISGC 2017 Security Workshop

Vincent Brillault

Computer Security forensics

Introduction

Live Analysis

Analysing the data collected

Offline Analysis

Preparing for next time

Credits & Resources

- Credits:
 - "Quick & Dirty forensics" by Leif Nixon
 - EGI's Forensic Howto by Heiko Reise
- New EGI guide: https://wiki.egi.eu/wiki/Forensic

Introduction

Why bother with forensics?

We can simply reinstall can't we?

Why bother with forensics?

We can simply reinstall can't we? NO!

- What if attack was before last backup?
- What if the hole that was used is still there?
- Which credentials were stolen? Is there a backdoor?
- What if other systems were compromised?

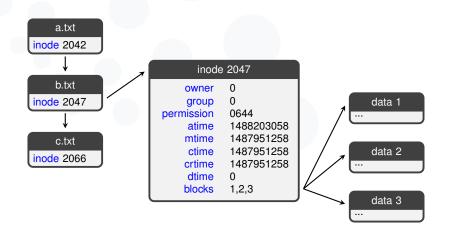
Why bother with forensics?

We can simply reinstall can't we? NO!

- What if attack was before last backup?
 - → When did the compromise happened?
- What if the hole that was used is still there?
 - → How was it compromised?
- Which credentials were stolen? Is there a backdoor?
 - \rightarrow What was done?
- What if other systems were compromised?
 - → What else was impacted?

Otherwise attackers might still be in or will come back!

Most of your action will have consequences



- Observation changes the observed object:
 - List folder content: change folder atime
 - Read a file: change file atime
 - Run a command: change binary atime
- Writing on disk destroy evidences:
 - Write to file: Write on free sectors
 - Leave syslog running: Write on free sectors
- Killing process releases open file & destroy memory
- Rebooting kills all processes & destroy memory
- ightarrow Do the least to keep the most

Inode-based filesystem 101

Filesystem timestamps

- Which timestamps?
 - atime Last file read or folder listed
 - mtime Last modification
 - ctime Last data or metadata (inode) change
 - crtime Creation time. Only on ext4
 - dtime Deletion time
- Can you trust them?
 - atime/mtime Changed by touch, tar, wget
 - *time Based on local time, bits on drive
 - dtime/crtime Not shown by stat, less accessible

Live Analysis

Danger from live analysis

- Common traps:
 - Malicious kernel module/rootkit
 - Malicious libraries (Id-preload or replacement)
 - Malicious binaries
- Are you alone?
 - Attacker might still be around
 - If possible, isolate system

Let's get started...

- ... go get a coffee/tee/...;)
 - · Also pickup paper & pen, to keep tracks
 - Find a colleague
- Use script to record what you do: script -t\$CASEID.timing \$CASEID.log
- Get a live shell
 - If VM, work from a snapshot/clone
 - Otherwise use local credentials or revoke them afterwards

Setup Work environment

- Avoid writing to disk: export HISTFILE=/dev/null
- Later (after timestamps): put static copies of tools here

Registers, peripheral memory, caches, etc.	nanoseconds
Main memory	nanoseconds
Network state	milliseconds
Running processes	seconds
Disk	minutes
Backup media, etc.	years
Printouts, etc.	tens of years

Table borrowed from Forensic Discovery, Farmer & Venema, Addison-Wesley 2005)

However, you might want to over-prioritize file-system metadata

- Your choice:
 - Using specialized software (TSK)
 - With stat, after remounting read-only
 - With stat, directly
- If you have a snapshot, ignore this, you will do it off-line
- Should be done for all mounted filesystems:
 - Root filesystem: as soon as possible
 - Home, log, ...: later (no bin)

Using specialized software (TSK)

- Not obvious to use, experience required:
 fls -m '/' -r /dev/sda1 > sda.files
 mactime -b sda.files > sda.timeline
- Raw drive access: not fooled by rootkits
- Raw drive access: Kernel cache?
- Obtains deleted files & creation time
- Requires TSK binaries:
 - Copy them from remote
 - · Via existing network mount
 - Via USB key

With stat, after remounting read-only

Basic shell commands¹:

```
mkdir newmount && mount --bind / newmount && mount -o remount,ro newmount && cd newmount find . -print0 | xargs -0 stat -c "%Y %X %Z %A %U %G %n" -- > ../root.files
```

- Using kernel: fooled by rootkits
- Can't see deleted files or creation time
- Calls local binaries: altered atimes

orensic#TimelineDecora

With stat, directly

- Basic shell commands²:
 - find / -xdev -exec stat -c "%Y %X %Z %A %U %G %n" -- '' > ../root.files
- Will modify all atime on folders
- Using kernel: fooled by rootkits
- Can't see deleted files or creation time
- Calls local binaries: altered atimes

Collect all relevant live data: Network

Network sockets and connections:

```
netstat -apn | tee netstat_apn.txt
```

Network environment:

```
ip -4 neigh show | tee ip6_neigh_show.txt
ip -4 route show | tee ip6_route_list.txt
ip -4 link show | tee ip6_link_show.txt
ip -6 neigh show | tee ip6_neigh_show.txt
ip -6 route show | tee ip6_route_list.txt
ip -6 link show | tee ip6_link_show.txt
```


Collect all relevant live data: Users

User connections

```
w > w.txt
last | tee last.txt
lastlog | tee lastlog.txt
```


Collect all relevant live data: Processes

Running processes

```
ps -auxwwwe | tee ps_auxwwwe.txt
pstree -lap | tee pstree_lap.txt
```

Files open

```
lsof -b -l -P -X -n -o -R -U | tee lsof_blPXnoRU.txt lsof -b -l -P -X -n -o -R > tee lsof_blPXnoR.txt
```


Collect all relevant live data: System

Mounted devices:

cat /proc/mounts | tee proc_mounts.txt

Kernel modules:

cat /proc/modules | tee proc_modules
ls /sys/modules | tee sys_modules

Dump interesting processes

- Stop it: kill -STOP \$PID
- Dump it: gcore \$PID
- Find interesting open files with lsof -p \$PID
- Save them, e.g.:
 - cp /proc/\$PID/exe \$PID.exe
 - cp /proc/\$PID/fd/\$FDNUM \$FILENAME
 - cp /dev/shm/\$FILENAME \$FILENAME
- Keep process information:

tar cvf proc_\$PID.tar /proc/\$PID/{auxv,cgroup,cmdline,comm,environ,limits,maps,sched, schedstat,sessionid,smaps,stack,stat,statm,status,syscall,wchan}

[Optional] Dumping whole memory

Specialized dumper: LIME

Analysis: Volatility

[Optional] Automated scans

- Automated scanners
 - Package integrity: rpm -Va, debsum,...
 - Rootkit detection: chkrootkit, rkhunter, ossec-rootcheck
- Installing and running such tool will temper evidences

Analysing the data collected

- Never trust data from compromised system
- Corroborate between different local sources
- Check if actually possible (paradox?)
- Corroborate with external sources

It's a hide & seek game/war!

Filesystem timeline analysis

- Rule of thumb:
 - atime/mtime usually manipulated
 - ctime less often manipulated
 - crtime/dtime rarely manipulated
- Look for weird folders (e.g. ..., in /var/tmp...)
- Check mtime/ctime/crtime on binaries
 ({/usr,}/{s,}{bin}:
 Most likely malicious if updated without package update
- Idem for libraries
- Look for incoherences:
 - File created after last modification on folder
 - File created after its last modification
- Check compilation traces: atime in /usr/include

Checking processes & network

- Process name irrelevant: easily faked
- Weird parent/child relationship?
- Weird open network sockets?
- Raw socket?
- Duplicated system process
- Check pid ranges: kernel/system pids usually packed together

Check user accesses

- Connection logs can be in 3 places
 - /var/log/wtmp: used by last
 - /var/log/secure: SSHD logs
 - /var/log/audit/audit.log*: audit logs, incl. auth.
 - → One of them might not have been cleaned!
- Check pattern change (password/key/kerberos)
- Check /.ssh/authorized_keys metadata

Offline Analysis

Stopping the system

- Only after obtaining live evidences
- Remember to get your evidences if in tmpfs
- Don't go through shutdown:
 - Use Sysrq keys: mount read-only, sync, shutdown
 - In the worst case, unplug the cable

- Disable auto-mount before connecting hard-drive
- Identify each drive after connection
- Use basic old dd:

dd if=/dev/sdX of=file.img bs=65536 conv=noerror,sync status=progress

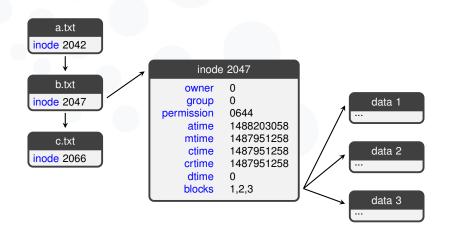
Access disk image: TSK

Identify partition offset: mmls file.img

DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

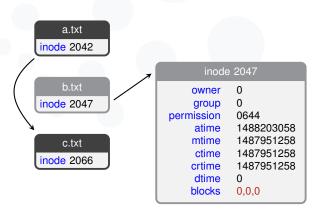
	Slot	Start	End	Length	Description
000:	Meta	0000000000	0000000000	000000001	Primary Table (\#0)
001:		0000000000	0000002047	0000002048	Unallocated
002:	000:000	0000002048	0020971220	0020969173	Linux (0x83)
003:		0020971221	0020971519	0000000299	Unallocated

Access disk image: TSK



- Identify partition offset: mmls file.img
- Extract timeline: as before, with offset
 fls -o 2048 -m '/' -r file.image > sda.files
 mactime -b sda.files > sda.timeline
- Extract files (from inode, here 261257):
 icat -o 2048 file.image 261257

Inode-based filesystem 102 File Deletion



Inode-based filesystem 102 File Deletion

data 1

data 2

data 3

Deleted file/data recovery

Recover recently deleted files:

ext2: Testdisk

ext3/4: extundelete

- Carve unallocated sectors using photorec from Testdisk
- grep image file directly
 - ightarrow Will also find data in slack space

Basic malware analysis

- Run strings -a on it
- 'Dynamic' analysis on isolated VM: strace & 1trace

Preparing for next time

Prepare some tools/hardware

- Download & test:
 - Testdisk for data recovery and carving
 - The Sleuth Kit for offline file-system analysis
 - extundelete for data recovery on ext3/ext4
- Prepare a USB key
 - A bootable Linux distribution, without auto-mount
 - The tools mentioned above
 - A README with commands that you might run & scripts
- Prepare some large storage for evidence/images
- (Optional) For offline forensics: a USB-SATA adapter

Prepare your systems

- Collect syslog remotely on a central server!
- Avoid losing evidences
 - Disable prelink
 - Avoid cronjob that read all files
 - Avoid mounting with noatime
- Install (& test) in advance basic debugging tools:
 - netstat: open sockets
 - Isof: open files
 - pstree (from psmicc): tree of processes
 - gcore (from gdb): generate core of running processes
- Enforce kernel module signature validation

Questions?

Good luck for your next forensics

You will be able to try a bit this afternoon!