Molecular dynamics of proteins in the cloud

Antonio Rosato

Magnetic Resonance Center University of Florence rosato@cerm.unifi.it

CERM/CIRMMPAn INSTRUCTMagnetic Resonance CenterCore Center

The initial steps of collagenolysis. (A) Closed (left) and open/extended (right) forms of FL-MMP-1 in equilibrium. (B) The extended protein binds THP chains 1T-2T at Val23-Leu26 with the HPX domain and the residues around the cleavage site with the CAT domain. The THP is still in a compact conformation. (C) Closed FL-MMP-1 interacting with the released 1T chain (in magenta). (D) After hydrolysis, both peptide fragments (*C*- and *N*-terminal) are initially bound to the active site. (E) The *C*-terminal region of the *N*-terminal peptide fragment is released.

Timescales of protein dynamics

Molecular dynamics simulations

Because no experimental technique can be applied to the investigation of all atoms/groups in a protein, **computer simulations are needed** to obtain a complete picture

MD simulations are based on the integration of classical equations of motion (variation of position, velocity and acceleration) over small intervals of time Δt (constant acceleration, linear motion). At each time step the system energy and forces over atoms are re-evaluated.

For protein MD simulations $\Delta t = 1-2$ fs. So for **1 µs of** simulation, **1 billion steps** are needed.

Calculations require several days and generate 10's Gb

MD simulations on GPGPUs The ferritin homopolymer

Ferritin plus solvent: 178910 atoms

Ion escape from a protein nanocage

C3 CHANNEL SECTION OUTSIDE CAGE

MD vs. NMR-derived dynamics

IRED analysis of a 1 μ s simulation of ubiquitin, compared to order parameters derived from experimental data

Pearson coefficient Exp-Calc = 0.82

Prompers, J. J., & Bruschweiler, R., 2002, *J. Am. Chem. Soc.*, 124(16), 4522–4534. Tjandra *et al., J. Am. Chem. Soc.*, 1995, *117* (50), pp 12562–12566

Structure of our current portal for short MD calculations

Bioinformatics, 27, 2384-2390 (2011). A Grid-enabled web portal for NMR structure refinement with AMBER. Bertini I, Case DA, Ferella L, Giachetti A, Rosato A.

Building a cloud-based web server for MD analysis

We used solutions developed by the **INDIGO-DataCloud** project (https://www.indigo-datacloud.eu/)

The AmberTools software package for MD was implemented as a container for Docker

We additionally implemented the **Oneclient** application in the Docker image **ONECATA**

Onedata is a Dropbox-style cloud storage solution. Its Oneclient component allows mounting your Onedata space in the local file system tree

In the Dockerfile

Introduction

The docker image is Ubuntu 14.04 LTS with AmberTools v16 compiled with

openmpi and with no mpi. The image is prepared to run as an application

O indigo-do

INDIGO - DataCloud

Building a cloud-based web server for MD analysis

The container further includes

- A data browser, so the container can be accessed via your web browser (i.e. no need to use the Onedata web interface in another tab).
- A viewer for macromolecular structures (NGL, a highly memory-efficient and scalable WebGL-based viewer)

We then instantiate the VM using Ansible with specifications in YAML

This is compatible with the **PaaS Orchestrator** of INDIGO

To instantiate the VM

YAML file

[...]

 name: build the image docker_image: path: /tmp/site name: cirmmp/mds2

As we are in dev, the container is stored locally

 name: run the site in a docker container docker_container: name: mds2 privileged: True image: "cirmmp/mds2" dns_servers: 150.217.1.32 published_ports: 8080

How it looks

Display of the results of MD analysis

Output data remain in your Onedata space when the VM is shut down

- N 🖓 🖓 💱 🗊 🗊 🕄 🔍 🔹 😫 🔛 🛍 😫 🖄 🎾 🎲 🍞 💹 🔍 🔊 📣 💷 📴 谷 🞯 🗉 🧭 🗑 🔤 📷 🕤

Infrastructure to compute MD simulations

Presently:

• GPGPU-based using the HTC infrastructure of EGI

Next

Dockerized version for GPGPU VMs

Computing MD simulations is much more efficient on GPGPUs: see https://documents.egi.eu/public/ShowDocument?docid=2774 Instead, MD analysis does not require GPGPUs

Next steps

Integrate this with the INDIGO **IAM** (Identification and Authorization Mechanism), to simplify management of the access token

Adapt to check running calculations on the fly

Improve the design of the web interface

Thank you for your attention!

People involved:

- Davide Sala
- Andrea Giachetti

Financial support: Italian Ministry of University **Regione Toscana European Commission**

