

Data Storage Accounting at RAL

<u>Rob Appleyard (GridPP/STFC)</u>, Jens Jensen (GridPP/STFC)

Introduction

- First, a little about what who I am and what I do:
 - I manage the data storage at RAL the UK's LHC Tier
 1 site
 - CASTOR storage of data for WLCG* and local facilities
 - CERN Advanced Storage manager
 - Disk & Tape
 - My responsibility
 - RAL is also developing a Ceph-based object storage system known as 'ECHO'
- This talk: Recent developments in our information system

What's an 'Information System'?

- It's a system that provides accounting information...
- What does an information system help people do?
 - Resource discovery
 - Resource accounting
- What information is provided?

- Accounting metadata (space used/total)
- Other metadata, like site location, contacts, etc.
- Who are the users?
 - Individual VO members ("Where should my data go?")
 - VO computing admins ("Do we have enough storage?")
 - WLCG management ("Are sites meeting their pledges?")

WLCG Information Systems

- Historically (from late '90s) used Globus Monitoring & Discovery System (MDS)
 - CERN implemented the BDII (Berkeley Database Information Index)
 - LDAP (Lightweight Directory Access Protocol) based, mostly using GLUE 1 (Grid Laboratory Uniform Environment) information schema
 - Actual file format is LDIF (LDAP Data Interchange Format)
- Hierarchical resource (such as SE) -> site -> top level)

Isn't This a Trivial Problem?

- So we should just publish the amount of data and capacity we have in whatever format is required, right?
- But it's a bit more complicated than that...
 - Everyone has a different idea of what we should 'obviously' publish...
- In 2009, a WLCG document was published that tried to standardise all this.
 - We know it as "Installed Capacity"*
 - Doesn't map well to modern requirements
 - Requires GLUE1 format
 - No longer viewed as authoritative

Original image by Ed Perchick (flickr) [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons, modifiby author using imgflip.com

Science & Technology Facilities Council

*https://twiki.cern.ch/twiki/pub/LCG/WLCGCommonComputingReadinessChallenges/WLCG_GlueSchemaUsage-1.8.pdf

History Time

• RAL's existing accounting system:

- 'CASTOR Information Provider' "The CIP"
- Written to be compliant with Installed Capacity
- Output is in GLUE1-complient LDIF format for LDAP
- Now dated
 - − We should have moved to GLUE 2 by 2012 ⊗
 - Output data also viewed as 'inaccurate' by users due to mismatch between requirements of Installed Capacity and actual use cases.
- So: Project to build a replacement from scratch

Why is This Complicated?

Complication 1: Shared Spaces

Complication 1: Shared Spaces

- Let's say we want to account for the disk cache element, which uses automatic garbage collection
 - 4 VOs share space, using u_1 , u_2 , u_3 , u_4 out of total T
 - We also report a total T_n to each VO.
 - How to define T_n ?

- If we just say T_n = T for all VOs, we are giving the most accurate information to the users (it's a cache!)
- But WLCG is not happy because we are quadrupleaccounting.
- If we say T_n = T/4 for all VOs, then we are reporting the real number (although WLCG still suspicious)
- But then we are lying to users!

Complication 1: Shared Spaces

- Defining 'Free' is even worse...
 - 4 VOs share space, using u1, u2, u3, u4 out of total T
 - If Free for VO1 = F1: which is true?
 - 'All the space that nobody is using' F1 = Total – (u1 + u2 + u3 + u4) Result: Double-accounting
 - 'An equal share of the space that nobody is using'

```
F1 = (Total - (u1 + u2 + u3 + u4)) / 4
```

Result: Lying to user

- 'Divide free space in proportion to how much you are currently using' F1 = (Total – (u1 + u2 + u3 + u4)) * u1 / (u1 + u2 + u3 + u4) Result: Confused user
- Something else?

Operation: Gordian Knot

- New implementation:
 - Just ignore the caches
 - They are largely transparent to users
 - Data throughput rates from users of shared tape resource rarely high enough to cause trouble.
 - We still have disk storage in CASTOR, but it is not shared.

http://www.maa.org/external_archive/devlin/devlin_9_01.html, marked for noncommercial resue

Complication 2: Tape

- Deleted files stay as "gaps" on tape until repacked
- Compression:
 - Data compresses on tape, so tape total capacity is "variable" according to how well data compresses...
 - Pledge is volume pre-compression

- However users pay for the tapes $\ensuremath{\textcircled{\odot}}$
- Old solution: Previously based guess on average compression ratio
 - Assumed free multiplied by same factor
 - Which average arithmetic or geometric mean?

Complication 2: Tape

- Tape allocated is "infinite"
 - Tape is in pool and allocated on demand
 - How does one publish ∞ in GLUE...?
- 'Deletion' is also a slippery concept here
 - Deleting a file on tape doesn't immediately result in free space
 - Gain in space is not realised until we 'repack' the tape
 - Should we account for this?

Solving the Tape Problem

- Report used space from the VO perspective
 - Compression is not their problem

- Saves VO getting worried because their catalogue says they are x bytes but we report a smaller number
- We now use our pledged data capacity as our 'total' capacity
- Repack is also not a VO problem, so don't worry about the deletion issue
 - We can free tapes by repacking as/when required

Complication 3: Broken hardware

- What do you do when a storage node needs repair?
 - Assume data will be recovered...
 - But should we reduce our capacity while the node is unavailable?
 - Yes?
 - VO worried by 'disappearing' data
 - No?
 - VO has less usable capacity than we report
 - May hit trouble if storage full

Eventual solution dicated by other considerations...

Complication 4: Multiple copies of data

- Replication within the SE (but in same storage tech/layer)
 - For durability (e.g. 0.999999s)
 - For availability (multiple copies of "hot data")
- E.g. writing 1MB creates 3 copies

- Has the user used 1MB? Or 3MBs?
- Used goes up by 1MB, free goes down by 3MB?
- Or is free pre-divided by 3? (like "usable space" for RAID)
- But what if not all users/files have three copies, eg for dynamic replication?
- Solution: publish usable space as free; dynamically created copies (for availability, garbage-collectable) do not count

Complication 5: ECHO

- Ceph-based object store new paradigm
 - One big instance, sliced up between users
 - 8+3 erasure coding raw data is 37.5% bigger than nominal size
 - Capacity is defined by allocation, not underlying hardware
 - What do we do when the hardware fails

The Solutions

CASTOR Disk Spaces

OLD	Production	Draining	Disabled	Readonly
Used	Used	-	-	Used
Free	Free	-	-	-
Total	Total	-	-	Total
Reserved	Total	Total	Total	Total

NEW	Production	Draining	Disabled	Readonly
Used	Used	Used	Used	Used
Free	Free	-	-	Free
Total	Total	-	-	Total
Reserved	Total	Total	Total	Total

CASTOR Tape Spaces

OLD	Full	Part-Full	Archived	Disabled
Used	Used	Used	Used	Used
Free	Free	Free	-	-
Total	Total	-	-	Total
Reserved	Total	Total	Total	Total

NEW: Ignore state of tape

Used = Σ(Sizes of all user's files on tape)
Free = Pledge - Σ(Sizes of all user's files on tape)
Total = Pledge
Reserved = Pledge

ECHO Accounting (Proposed)

- Disclaimer: The ECHO development team haven't finalised their requirements; this is a proposal...
- ECHO is analogous to tape from an accounting perspective
 - We propose to handle erasure coding like tape compression
 - Neither users nor WLCG care about underlying capacity, they care what can be used.

• Deal with hardware failure by hardware overcommit

ECHO Accounting (Proposed)

Handle much like tape!

- •Used = Σ (All object sizes)/Erasure Code ratio (1.375)
- •Free = Pledge Used
- •Total = Pledge
- •Pledge = Pledge

Data Gathering

- Most of CASTOR data gathered from CASTOR's 'name server' DB
 - Big Oracle DB holding contents of namespace tree
 - RAL DBA Andrey Smirnov wrote an SQL query to return size of all data below given point in namespace
- Have to ask another DB ('Stager') for value of 'Free' and 'Total for disk.
- ECHO very easy
 - All necessary information can be trivially gathered using Ceph command line utilities
 - They can output JSON! :D

Accounting System Architecture

The Formatting Layer

- Converts JSON input to output suitable for external use
- The formatting layer's primary target is GLUE 2formatted LDIF for LDAP for a GIP.
 - GIP: Generic Information Provider; a BDII plugin
- This satisfies WLCG requirements

Data Publishing (WLCG)

- Other accounting formats exist...
- Path not taken: If the output from the DG layer was in XML rather than JSON, StAR could be created trivially with using XSLT (XML -> XML conversion language)
 - StAR-formatted data can be published via SSM, a daemon which reads the StAR from a file and publishes to APEL
- <u>https://wiki.egi.eu/wiki/APEL/SSM</u>

 StAR is designed for cloud, and uses timestamps to show publishing "freshness"

Data Publishing (VOs)

- Big VOs often have idiosyncratic accounting requirements
 - ATLAS simply require JSON file uploaded into the SE in a known location...
 - Other VOs have been ignoring the old information system entirely, due to perceived mismatch between Installed Capacity and user requirements
- Users see content with proposed new implementation
 - We are hopeful for a good take-up of new system

Acknowledgements

- Funded by GridPP and STFC's scientific computing department
- John Gordon (STFC) for background information, especially on StAR
- Andrey Smirnov for the Oracle query

- Bruno Canning & RAL ECHO development team
- Maria Alandes Pradillo (CERN) and Guenter Grein (KIT) who have patiently waited nearly 18 months for us to solve the GGUS ticket that prompted this work!

Any Questions?

Image by NASA, ESA, and the Hubble Heritage Team (STScI/AURA) [Public domain], via Wikimedia Commons

