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Introduction

Metagenomics

@ Known as environmental
genomics or community
genomics

@ Study of uncultured
microorganisms

o Contribute to advances in
many fields, e.g., Earth
sciences, life sciences,
bioenergy, biotechnology,
agriculture.

Figure: Acid drainage(wikipedia.org)
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Introduction

Genomic vs. Metagenomics
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Problem: more than 99% microbes cannot be cultured in the laboratory
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Introduction

Genomics vs. Metagenomics
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Problem: lose information about which genes/sequences belong to
which genomes/microbes

Source: Gianoulis, Harvard university, US
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Introduction

Taxonomic classification of metagenomic reads

Problem’s definition

The taxonomic classification aims to group reads into bins and
determines phylogenetic relationships between them and known
taxa.
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Introduction

Why classification problem?

(1) The primary goals of (2) An important step in a
metagenomic studies [2] metagenomic project [1]

@ Who is out there?

(taxonomic content,
abundance level?)

Experimental
design, Sampling,
DNA extraction

DNA sequencing

@ What are they doing?

@ How do they compare?

(Metagenomic) Taxonomic k
Assembly classification/clustering
’ Others Metagenomic data

analysis process



Introduction

Research challenges

Short read length

@ Genomic signatures are less preserved in DNA read with
length < 1000bp [3]

e RAlphy (2011)[4]: 32% - 36% (Accuracy) for reads with the
length of 100bp
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Introduction

Research challenges

Short read length

@ Genomic signatures are less preserved in DNA read with
length < 1000bp [3]

e RAlphy (2011)[4]: 32% - 36% (Accuracy) for reads with the
length of 100bp

Large amount of data

@ Require large computational costs

@ Work with a huge amount of reference database (GenBank
(12/2016): =~ 200.000.000 sequences with ~ 2 x 10'3 bases)
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Related works

Related works

o Composition-based methods
- Using genomic signatures (e.g., oligonucleotide frequencies,
GC-content)
- TACOA [6], AKE [7])
- are fast, but difficult to analyze short reads
e Homology-based methods
- Basing on the similarity between sequences
- MEGAN [2], CARMA3 [9], MetaCluster-TA [10]
- work well with both short and long reads, but much
computational expense
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Related works

Related works

Metagenomic applications are based on high-performance
computing techniques

e Map-reduce framework: MrMC-MinH [11],
e GPU, multi-core-CPU: Parallel-META [12]
e MPI: mpiBlast [13]
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Related works

Related works

Our previous works
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Step 1: Clustering Step 2: Taxonomic assignment

Figure: Classification process of SeMeta (Vinh et al (2016) [8])
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Proposed method

ParSeMeta
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Figure: Classification process of ParSeMeta
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Results

Experiment setup

@ Test on two physical machines (12 CPUs, 120G RAM, and
100GB disk storage)

@ Three cases (number of cores, number of virtual machines,
memory sizes)
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Results

ParSeMeta

350 T T T
ParSeMeta =—+—
1 SeMeta ——
300
o 250 F 1
5
£
E 200} J
o
£
g\ 150 | -
=
c
=1
& 100 3% 2U% 203
n \'\: i i
0 L L L L
1 3 5 7 9 11
Number of processors

Figure: The performance of ParSeMeta and SeMeta with different
numbers of core
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Results

ParSeMeta
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Figure: The performance of ParSeMeta with different numbers of virtual
machines, with cases of using 3GB RAM and 6GB RAM
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Results

The classification quality

Species  Genus  Family  Order
Dataset dsl level level level level
SeMeta Sem. 42L.T6% 4276% 99TI% W%
Pre. 42.88% 4288% 100% 105
ParSeMeta Sem. NIA W% 99T1% WIl%
Pre. NIA 100 100% 100%
Dataset ds2
SeMeta Fem. 2472%  3024% 61M%  61.WMW%
Fre. 3991% 3034% 100% 105
ParSeMeta Sem. 24TMp 3024%  61%% 61.94%
FPre. 391%  3034%  100% 100%
Dataset ds3
Sebeta Sen.  4669% 6484%  6LBAS  64E4%
Pre. 6T09% 93 16% 9316% 93 16%
ParSeMeta Sem. 2564% 64E4% GRS 64BA%
Pre.  1645% U306%  S5.06% U3 16%
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Conclusion

@ Propose a parallel algorithm utilizing the advantages of high
performance computing system

@ ParSeMeta is able to reduce much computational time, still
keeps classification quality

@ Future works: apply on large-scale metagenomic datasets,
predicting execution time of the algorithm with different
settings (parameters of algorithm, allocated resources)
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Conclusion

Applying Reconfigurable Computing for Internet Security

— HR-IPS: HCMUT Reconfigurable Intrusion Prevention System

HR-IPS meets line rate full duplex Gbps network link
without any drops.

5x better throughput compare to bare software
solution (Snort IPS).

HR-IPS Analysis and Secur

Throughput comparison between rt
and HR-PS RIB
“~Snort
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Conclusion

Low-power wireless water quality monitoring system

«  Water quality monitoring system for «  Low-power network protocol
shrimp farming + Data management
. %yergy harvesting
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