
Container Technology and Software Delivery

Jakob Blomer

ISGC ’17
March 5th, 2017

jblomer@cern.ch Containers 1 / 13



Application Containers

Standard Surface for Applications

∙ Packaging and deployment

∙ Composability

∙ Reuse

Déjà-Vu: Virtual Machines?
Containers seem to tip the balance because they are more efficient and
more convenient to use.

Idealised Container: Wraps a Slim Service
For instance: A Python application including dependencies to render
https://phonebook.cern.ch

jblomer@cern.ch Containers 2 / 13

https://phonebook.cern.ch


Virtual Machines vs. Container Virtualization

Container pros and cons:

, Smaller virtualization overhead for
system calls, I/O, memory
translation

, Better at overcommitting with idle
services

, Boots faster (with caveats)

, Orchestration tools available

/ Weaker isolation

/ No “priviliged operations”,
e.g. mount

/ Linux only

/ More moving parts
Server HardwareServer Hardware

Host OS Kernel Host OS Kernel

Hypervisor

OS 
Binaries 
/ Libs

App

Guest OS 
Kernel

Guest OS 
Kernel

OS 
Binaries 
/ Libs

App

OS 
Binaries 
/ Libs

App

OS 
Binaries 
/ Libs

App

jblomer@cern.ch Containers 3 / 13



Name Spaces

Virtualization of individual kernel resources
Useful utilities: unshare, nsenter, /proc/PID/ns, /proc/PID/mountinfo

pid : Virtual process identifiers:
sudo unshare –fork –pid /bin/bash
echo $$ → 1

user : Virtual uid/gid mappings. Enables fake root:
unshare -U -r /bin/bash

net : detach network adapters

mount : detach directory tree from parent process
mount points can be

private : complete isolation between process groups
shared : mounts are propagated upwards and

downwards
slave : mounts are only propagated downwards

more : inter-process communication, host name, . . .

Powerful, but: complex to handle manually, hard to diagnose!
jblomer@cern.ch Containers 4 / 13



CGroups

Hierarchical resource containers, confines applications

∙ Steered through the cgroups file system:
$ mkdir /sys/fs/cgroup/memory/small
$ echo $((1024*1024)) >
/sys/fs/cgroup/memory/small/memory.limit_in_bytes
$ echo $$ > /sys/fs/cgroup/memory/small/tasks
$ cat /sys/fs/cgroup/memory/small/tasks
13600
13658
$ firefox
Killed

∙ Higher level interfaces: cgconfig, cgcreate, cgdelete, . . .

∙ Controllers for memory, cpu pinning, device access, freezing, dots

Useful in its own right, e.g. HTCondor, benchmarks

jblomer@cern.ch Containers 5 / 13



chroot, layers, and union file systems

Source: Docker

∙ The “image” is usually a
tarball with the root file
system of the container

∙ Docker can assemble
images from multiple
tarballs in “layers”

∙ The layered approach
requires a union file
system to create a single
root mount point

∙ Another option: bind
mount of writable parts
into a read-only root file
system
(/var, /tmp, /home, . . . )

jblomer@cern.ch Containers 6 / 13



Container Ecosystem: Engines

Container Engines

∙ Docker: most influential one, introduced the push-pull model for containers

Source: http://blog.octo.com/en/docker-registry-first-steps

∙ Singularity: interesting new engine from the HPC world, very lightweight

∙ lxc, rkt, systemd-nspawn

jblomer@cern.ch Containers 7 / 13

http://blog.octo.com/en/docker-registry-first-steps


Container Ecosystem: Clusters

Container Orchestration
∙ Mesos and DC/OS: two-level cluster scheduler,

good for production services

∙ Kubernetes: container orchestration,
good for running ensembles of containers

∙ Docker Swarm

Example: Test cluster with Kubernetes

Source: Julien Leduc

jblomer@cern.ch Containers 8 / 13



Container Ecosystem: Clusters

Container Orchestration
∙ Mesos and DC/OS: two-level cluster scheduler,

good for production services

∙ Kubernetes: container orchestration,
good for running ensembles of containers

∙ Docker Swarm

Example: Production Services Cluster on Mesos

Source: Dario Berzano

jblomer@cern.ch Containers 8 / 13



Reality: Container Images are Big

Image Distribution Problem:

iPhone App Docker “App”

20 MB 1 GB
changes every month changes twice a week
phones update staggered servers update synchronized

Example: in Docker
$ docker pull r-base
−→ 1 GB image
$ docker run -it r-base
$ ... (fitting tutorial)
−→ only 30 MB used Container (“App”)

Linux Libs . . .

jblomer@cern.ch Containers 9 / 13



CernVM-FS In Containers

Bind Mount
docker run -v /cvmfs:/cvmfs:shared ... or
docker run -v /cvmfs/sft.cern.ch:/cvmfs/sft.cern.ch ...

∙ Cache shared by all containers on the same host

Docker Volume Driver
https://gitlab.cern.ch/cloud-infrastructure/docker-volume-cvmfs/

docker run --volume-driver cvmfs -v
cms.cern.ch:/cvmfs/cms.cern.ch ...

∙ Integrates with Kubernetes

From Inside Container
docker run --privileged ...

∙ Probably not very much used in practice

jblomer@cern.ch Containers 10 / 13

https://gitlab.cern.ch/cloud-infrastructure/docker-volume-cvmfs/


CernVM as a Container

Options for CernVM-FS

1 Fuse, mapped from host

∙ Shared cache
∙ Requires privileges

on the host

2 Using Parrot-Cvmfs

∙ Pure user-space (ptrace)
∙ Can impact performance and

stability

Root file system (/) layout
right:/

right:usr

right:lib64

right:etc

right:var

right:tmp

...

symlink

symlink

copy

copy

right:cvmfs

right:usr

right:lib64

right:etc

right:var

...

Limitations
Can be used to run tasks, does not allow derived containers

jblomer@cern.ch Containers 11 / 13



Docker Graph Driver Plugin
Work in Progress by Nikola Hardi

graphdriver (plugin) /cvmfs

L3

L2

L1

thin

L

RW

L

thin

RW1 RW2 RW3 RW4

L3

L2

L1

Read-Only layer. ~ 300 MiB
Fetched from network as whole.
Read-Only layer.
Created locally per container.
Read-Only layer stored on CVMFS.
Fetched per file, on demand.

RO layer, only metadata. ~ 100 KiB
List of parent layers stored in CVMFS.

getParentLayers(RW1)
getParentLayers(thin)

}Up to 1 GiB

jblomer@cern.ch Containers 12 / 13



Summary

∙ Containers used for

∙ Isolation: e.g. replacing glexec, resource containment
∙ Virtual environments:

CentOS on Ubuntu, SL4 on CentOS7 (data preservation)
∙ Unit of scheduling in distributed systems: Kubernetes, Mesos

∙ Docker/Singularity for isolation + CernVM-FS for image distribution:

∙ Works out of the box with Singularity
∙ Bind mounts and volume driver for experiment software in Docker
∙ Full support for Docker’s pull – commit – push lifecycle:

CernVM-FS graph driver (expected H2/17)

∙ There are certain dangers with containers

∙ More moving parts (and moving targets) in your system
∙ Containers foster an attitude of “capturing the mess”
∙ Requires automation: containers need to be disposable items

(e.g. no carriers for storage, databases)

jblomer@cern.ch Containers 13 / 13


