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Schema

Aim: workflow for evaluation of brain functional connectivity with
different community detection algorithms, and their strengths to
discriminate between health and brain disease.

m fMRI measures brain function

m no consensual preprocessing pipeline

functional . community
preprocessing |~ | connectivity cgrr:ml:_nlty classification  |——p detection
network etection as a marker?

m community structure influenced by disease, e.g. Alzheimer’s
disease or schizophrenia (Brier, 2014; Alexander-Bloch, 2012)

fMRI
data
acquisition
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Possible biological interpretation: communities represent groups of
nodes that have different cognitive function (sight, memory, etc.).
These groups can change in time (Bassett, 2013).
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Data

70 patients with mild cognitive impairment (MCI): 35 women;
66.714+9.44 years
50 healthy controls (HC): 34 women; 66.74+7.35 years

— intermediate stage between the expected cognitive decline of
normal aging and the more-serious decline of dementia

— problems with memory, language, thinking and judgment greater
than normal age-related changes

— goal of studying MCI: early diagnosis and slowing down the onset
of dementia
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Functional connectivity

imaging data Anatomical parcellation Time series data Adjacency matrix
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Functional brain network
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m 3T resting-state fMRI, 7min, 200 scans ‘ — =
!nfermrtempcm Orbitofrontal
m 3 x3x3mmvoxels, TR =2.08s Temporal cole

‘Sporns, Bullmore 2009

m nodes: 82 regions of AAL atlas (Tzourio-Mazoyer, 2002)
m edges: Pearson’s correlation coefficients
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Preprocessing

imaging data Anatomical parcellation Time series data Adjacency matrix
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16 variants of preprocessing
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Community structure and its detection

modules / communities / clusters / subnetworks / (temporo-)spatial patterns

property of real complex networks

dense connectivity within communities

sparse connections between modules

NP-complete problem
optimization methods

Community structure - modules and hubs

heuristics, some non-deterministic
requiring repetitive computations

(Bullmore & Sporns, 2009)
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Community detection

iterative community finetuning repeated 100x
representative/consensual partition across repetitions and subjects

m Louvain modularity method (Blondel, 2008)
m Potts spin-glass model (Blatt, 1996)

m random matrix theory — RMT (Mehta, 2004; MacMahon, 2015):
identification of non-random properties of correlation matrices C.
It is based on eigenvalues computation. C = C(") + C(9) 4 ¢(m),
Cc() ...random mode, C9) ... group mode, C(™ ... market mode
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Community detection — used approaches

binary network, 15% sparsity threshold
m Louvain modularity method
m RMT + Louvain modularity method
m Potts modularity model
m RMT + Potts modularity model

— modularity coefficient: ability of network to form clusters
— node classification to a community
— computational demand
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Results: RMT step increases modularity

group MCI

group HC
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Results: global signal influences community structure

24 MR + WM + CSF + GS

Extreme effect of global signal filtering on functional connectivity
(Murphy, 2009).

We show this influence on communities’ localization.
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Results: HC vs. MCI changes in modularity coefficient
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— t-tests between groups
— statistically significant differences (p<0.05) observed only for Louvain
modularity with or without RMT decomposition
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Classification: modularity as a marker of MCl

variants without global signal filtering

random sampling to train (75%) and test (25%) samples
10-fold cross-validation, 1000 iterations

support vector machine (SVM) kernel: radial basis function
age and gender taken into consideration

SVM using all preprocessing and filtering variants

m classification accuracy = 78.9% (Train), 50.0% (Test)
m 75 support vectors (63 bounded)

m classification accuracy = 75.6% (Train), 63.3% (Test)
m 72 support vectors (60 bounded)
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Physiological conclusions I.

Community structure - modules and hubs 24 MR + WM + CSF + GS

m Communities represent functionally specific clusters / modules.

m Decomposition by random matrix theory increases modularity
coefficient.

m Higher level of filtering (24 MR, CSF+WM) relates to higher value
of modularity coefficient in RMT variants.

m We do not recommend global signal filtering.
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Physiological conclusions |l.

m Louvain modularity is significantly increased in mild cognitive
impairment.

m High pass filtering enhances the difference from healthy controls.

m However, the increase is not enough for classification analyses.
m Classification accuracy similar to literature:
m 62.8% using diffusion MRI (Prasad, 2015)
m 84% using fMRI when classifying Alzheimer’s disease patients
(Zhang, 2015)
m 89.6% using cortical thickness when classifying Alzheimer’s
disease patients (Li, 2012)
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Computational and time complexity of pipeline steps

per subject (120 subjects):

m data acquisition: subject preparation (tens of mins) + scanning
(~10min). MR provider and sequence dependent.

m preprocessing: compulsory steps (~3min) + additional filtering
(~1min); ~160 thousand voxels per scan (200 scans). MATLAB.

m network construction: representative signal + Pearson’s
correlation (< 1s); 82 nodes of 200 time-points signals. MATLAB.

m community detection algorithms: data loading and preparation
(~7s) + community detection (< 2s in average, in extreme up to
11s); RMT decomposition, 100 repetitions of finetuning, null
models generating. MATLAB.
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Computational and time complexity of pipeline steps

group level:

m community detection algorithms: ~5 hours of computing
community structure for all preprocessing variants and all subjects
+ representative partition computation (~7s per preprocessing
variant, ~2min in total); 120 subjects with 100 repetitions, 16
preprocessing variants. MATLAB.

m classification analysis: ~5s for each combination of parameters,
~20min in total; repetitions of train/test divisions, 1000 iterations
of cross-validation. STATISTICA.
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Computational and time complexity conclusions

m Preprocessing is the most computationally demanding step.
m Strongly depends on number of network nodes.

m Classification analysis time demanding because of missing
feature selection.

17/19



Future work

m More sophisticated feature selection for classification is needed.

m More sophisticated parameter of community structure could better
reveal the differences between groups.

m Community structure algorithms considering temporal evolution of
connectivity may show more prominent difference between health
and MCI (we’re working on it).

m Better (parallel) implementation is needed for easier use.
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Thank you.



