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Schema

Aim: workflow for evaluation of brain functional connectivity with
different community detection algorithms, and their strengths to
discriminate between health and brain disease.

fMRI measures brain function
no consensual preprocessing pipeline
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data

acquisition
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functional
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network

community
detection
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community
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as a marker?

community structure influenced by disease, e.g. Alzheimer’s
disease or schizophrenia (Brier, 2014; Alexander-Bloch, 2012)

Possible biological interpretation: communities represent groups of
nodes that have different cognitive function (sight, memory, etc.).
These groups can change in time (Bassett, 2013).
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Data

70 patients with mild cognitive impairment (MCI): 35 women;
66.71±9.44 years
50 healthy controls (HC): 34 women; 66.74±7.35 years

MCI

– intermediate stage between the expected cognitive decline of
normal aging and the more-serious decline of dementia

– problems with memory, language, thinking and judgment greater
than normal age-related changes

– goal of studying MCI: early diagnosis and slowing down the onset
of dementia

3 / 19



Functional connectivity

3 T resting-state fMRI, 7min, 200 scans
3 x 3 x 3 mm voxels, TR = 2.08 s
nodes: 82 regions of AAL atlas (Tzourio-Mazoyer, 2002)
edges: Pearson’s correlation coefficients
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Preprocessing
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hpf . . . high pass filtering, cutoff at 128 s
MR . . . movement regressors
WM . . . white matter

CSF . . . cerebro-spinal fluid
GS . . . global signal

16 variants of preprocessing
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Community structure and its detection
modules / communities / clusters / subnetworks / (temporo-)spatial patterns

property of real complex networks
dense connectivity within communities
sparse connections between modules

NP-complete problem
optimization methods
heuristics, some non-deterministic
requiring repetitive computations

(Bullmore & Sporns, 2009)
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Community detection

iterative community finetuning repeated 100x
representative/consensual partition across repetitions and subjects

Used methodology

Louvain modularity method (Blondel, 2008)
Potts spin-glass model (Blatt, 1996)
random matrix theory – RMT (Mehta, 2004; MacMahon, 2015):
identification of non-random properties of correlation matrices C.
It is based on eigenvalues computation. C = C(r) + C(g) + C(m),
C(r) . . . random mode, C(g) . . . group mode, C(m) . . . market mode
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Community detection – used approaches

binary network, 15% sparsity threshold
Louvain modularity method
RMT + Louvain modularity method
Potts modularity model
RMT + Potts modularity model

Evaluated features

– modularity coefficient: ability of network to form clusters
– node classification to a community
– computational demand
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Results: RMT step increases modularity
group0HC
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Results: global signal influences community structure

Extreme effect of global signal filtering on functional connectivity
(Murphy, 2009).

We show this influence on communities’ localization.
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Results: HC vs. MCI changes in modularity coefficient
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– t-tests between groups
– statistically significant differences (p<0.05) observed only for Louvain
modularity with or without RMT decomposition
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Classification: modularity as a marker of MCI

variants without global signal filtering
random sampling to train (75%) and test (25%) samples
10-fold cross-validation, 1000 iterations
support vector machine (SVM) kernel: radial basis function
age and gender taken into consideration

SVM using all preprocessing and filtering variants

classification accuracy = 78.9% (Train), 50.0% (Test)
75 support vectors (63 bounded)

SVM using preprocessing with hpf and RMT+Louvain modularity

classification accuracy = 75.6% (Train), 63.3% (Test)
72 support vectors (60 bounded)
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Physiological conclusions I.

Communities represent functionally specific clusters / modules.
Decomposition by random matrix theory increases modularity
coefficient.
Higher level of filtering (24 MR, CSF+WM) relates to higher value
of modularity coefficient in RMT variants.
We do not recommend global signal filtering.
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Physiological conclusions II.

Louvain modularity is significantly increased in mild cognitive
impairment.
High pass filtering enhances the difference from healthy controls.
However, the increase is not enough for classification analyses.
Classification accuracy similar to literature:

62.8% using diffusion MRI (Prasad, 2015)
84% using fMRI when classifying Alzheimer’s disease patients
(Zhang, 2015)
89.6% using cortical thickness when classifying Alzheimer’s
disease patients (Li, 2012)
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Computational and time complexity of pipeline steps

per subject (120 subjects):

data acquisition: subject preparation (tens of mins) + scanning
(∼10min). MR provider and sequence dependent.

preprocessing: compulsory steps (∼3min) + additional filtering
(∼1min); ∼160 thousand voxels per scan (200 scans). MATLAB.

network construction: representative signal + Pearson’s
correlation (< 1s); 82 nodes of 200 time-points signals. MATLAB.

community detection algorithms: data loading and preparation
(∼7s) + community detection (< 2s in average, in extreme up to
11s); RMT decomposition, 100 repetitions of finetuning, null
models generating. MATLAB.
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Computational and time complexity of pipeline steps

group level:

community detection algorithms: ∼5 hours of computing
community structure for all preprocessing variants and all subjects
+ representative partition computation (∼7s per preprocessing
variant, ∼2min in total); 120 subjects with 100 repetitions, 16
preprocessing variants. MATLAB.

classification analysis: ∼5s for each combination of parameters,
∼20min in total; repetitions of train/test divisions, 1000 iterations
of cross-validation. STATISTICA.
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Computational and time complexity conclusions

Preprocessing is the most computationally demanding step.
Strongly depends on number of network nodes.
Classification analysis time demanding because of missing
feature selection.
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Future work

More sophisticated feature selection for classification is needed.

More sophisticated parameter of community structure could better
reveal the differences between groups.

Community structure algorithms considering temporal evolution of
connectivity may show more prominent difference between health
and MCI (we’re working on it).

Better (parallel) implementation is needed for easier use.

18 / 19



Thank you.

19 / 19


