The SDN Applications for Data Transfer & Network Security @ IHEP

Fazhi Qi CC,IHEP

9th Mar, 2017

ISGC 2017, Taipei, Fazhi Qi/IHEPCC

1

Agenda

- About SDN
- SDN for HEP Data Transfer
- SDN for Security
- Summary

Software Defined Networking (SDN)

A Programmable Network—Design, Build, Manage

Key Features

 Network algorithms decoupled from Hardware

Advantages

- Network automation can integrate with other disciplines
- Less lock-in; Users can choose features to suit needs
- Networking control can innovate at software speeds

Agenda

- About SDN
- SDN for HEP Data Transfer(SDN-WAN)
- SDN for Security
- Summary

Goals & Thoughts

- Refer to :
 - A virtual private network based on software-defined network architecture for high energy physics scientific data exchange
 - <u>https://indico.cern.ch/event/466991/contributions/1143596/</u> (HEPiX 2016 Spring)
- Improve the data exchange performance, based on the current
 - Network infrastructure
 - Applications
- Provide a simple, flexible, robust, high performance and Easy/Central - controlled network environment for HEP members in China
 - Overlay: use IPv4 & IPv6 network link
 - Automatically and Dynamically network path choosing based on the application requirements and network performance status

SDN-WAN & vWAN

- vWAN :virtual WAN , which is considered a part of SD-WAN.
- vWANs are used to replace private WAN services with regular broadband connectivity.
- vWANs are used to secure the connection and encrypt the traffic across public networks providing an additional layer of security through secure socket layer offload.
- vWAN also aggregates WAN links, making multiple dedicated or public network links function as a single large link. This helps with applications.
- vWAN also is used for load balancing across various communications channels because they can selectively route flows and packets based upon link performance.

Different path with different flow

- Gateway: All-in-one device
- VPN: Virtual link/IPv4 Over IPv6
- Network performance monitoring (Packet loss,RTT,Throughput)
- Active network performance measurement: iperf

The Key Technology

Dynamic path selection base on

- Packet loss
- Latency
- Link Bandwidth
- Traffic throughput
- Historical data statistics
- \rightarrow Available performance

path	Packet loss	latency	Available bandwidth
Site A->site B(ipv4)			
Site A->site B(ipv6)			
Site A->site C->site B (ipv4)			
Site A->site C->site B (ipv6)			
Site A->(ipv4)site C-> (ipv6)site B			
Site A->(ipv6)site C-> (ipv4)site B			

Deployment status

- Network topology
 - SJTU (Shanghai Jiao Tong University), SDU (Shandong University), CCNU (Central China Normal University), IHEP
 - IPv4 & IPv6

Controller dashboard - network & devices status

Controller dashboard

Controller dashboard - link performance statistics

链路质量统计

链路质量统计

Controller dashboard- Path selection

功能开关

当前已开启流量智能均衡功能

Fazhi Qi/IHEPCC

IHEP<->SDU Results (Girdftp)

IHEP<->SDU:IPv4

IHEP<->SDU:IPv6

> IPv6 is much better than IPv4, 10~100 times increased

Agenda

- About SDN
- SDN for HEP Data Transfer
- SDN for Security
- Summary

Why

- The underlying network becomes increasingly critical for supporting end user applications and services
- Network traffic management, service complexity, and security become more taxing.
- Network managers face network performance and reliability challenges, including security-related attacks and breaches, resulting in service disruptions that can occur at any moment
- It is important to deploy security devices and policies without applications disruptions / smoothly

What we should do

- Threat Management: Detect and mitigate threats in the network quickly and efficiently
 - Detection: using the available tools/IDS, system log analysis ...
 - Mitigation: Real-time programmability of the network base on the detection results
 - Integration detection and mitigation: with third-party security and analytics platforms, such as IDS, Log analysis system, vulnerability scanner.....
 - Interface
 - User: web-based Graphical User Interface (GUI) that provides simple profile configurations and a detailed view of the dashboard and associated settings
 - Controller to detection: Rest APIs
 - Controller to network devices : Openflow

Fazhi Qi/IHEPCC

Science DMZ for traditional network

Network topology upgrade

Network topology upgrade

Fazhi Qi/IHEPCC

Case 1: Service Chain

Send different applications traffic to different firewall

Case 2: Firewall Bypass for Science-DMZ

Case 3: Dynamic security policies

Fazhi Qi/IHEPCC

Key technology: Traffic Analysis

- Capture the traffic: Sflow/Netflow
- Analyze the traffic(using the available open source or commercial tools) and transfer the results to SDN controller through REST API
- Based on the early built feature library, SDN controller established the openflow rules and set up in the network switches

Summary and outlook

- SDN is one choice to make the network (security) management easily/efficiently
- Data transfer application is in production and 4 sites have been involved and running well , other 2 sites will join soon...
- Security application has been launched in IHEP network, and more functions will be developed and released
- Still many things to do.....

Thanks

Fazhi Qi/IHEPCC