Open maintenance analysis platform at IHEP

Hu, Qingbao (胡庆宝)
huqb@ihep.ac.cn
On behalf of Computing Team of IHEP CC
ISGC 2022
Outline

• Computing platform @IHEP
• Challenges & Goals
• Open maintenance analysis platform
• Typical application case
• Summary & Next plan
IHEP is hosting or attending in >15 experiments around the field of high energy physics.

Distributed Resources

- Big Data Centers:
 - Beijing IHEP Site
 - Dongguan Data site

- Exp. Sites:
 - Daocheng(LHAASO), Jiangmen(JUNO) etc.

- Remote sites:
 - Shandong Univ., Lanzhou Univ. etc

Remote sites have good network to IHEP
Remote sites is fully managed by IHEP CC
Aims to integrate all the sites’ resources for Exp.
Challenges

• More experiments require larger computing platforms
 • Machine scale keeps expanding
 • Cluster environments are more complex
 • The amount of monitoring data continues to increase
 • Monitoring information is more and more closely related

• Traditional monitoring tool
 • Relatively simple functions.
 • Monitoring data cannot be shared with other monitoring tools.
 • Poor scalability for big data scale

• Traditional operation and maintenance technologies cannot guarantee service quality

• More powerful maintenance analysis platform is needed.
Goals (1/2)

• Basic data management platform
 • Stable provision of "rich and valuable" data

• Intelligent analysis and decision-making platform
 • The value of AI capabilities
 • The accumulated knowledge of operation and maintenance experts

• Agile automation control platform
 • The realization of operation and maintenance capabilities

• Standardized intelligent maintenance management process
 • Realize the closed loop of intelligent maintenance management
• The closed loop of intelligent maintenance management

1. Expand monitoring metrics to predict trend changes

2. Fault feature identification & Real-time alarm

3. Automatically trigger decisions to reduce impact

4. Correlate analysis indicators to locate fault triggering causes

5. The troubleshooting process is recorded in the expert knowledge base

6. Generate the failure event process report

7. Failure Simulation and Troubleshooting Tests

- Reduce Impact
- Service Recovery
- Failure Analysis
- Process Optimization
- Improve maintenance standards
- Potential Failure
- Failure Occurs
- Fault Detection
- User behavior
- Application
- Platform
- Infrastructure

3/23/2022
Outline

• Computing platform @IHEP
• Challenges & Goals
• Open maintenance analysis platform
 • Platform Functional
 • Function Realization
 • Platform Performance
• Typical application case
• Summary & Next plan
Open maintenance analysis platform

- Maintenance analysis platform is a functional extension of OMAT.
- OMAT (Open Monitoring Analysis Toolkit)
 - Switch “traditional single monitoring” to “whole platform quick analysis”
 - As the core of maintenance analysis platform

- Support rich applications
- Real-time data analysis
- Comprehensive data collection
Platform Functional Framework

• **Platform Features:**
 • Comprehensive data collection
 • Flexible and efficient analysis
 • Improve the business value of maintenance data
 • Support rich applications
 • Containerized deployment
 • High reliability and high availability

Ecological Integration Layer (collection control platform)

- Ganglia
- Nagios
- Zabbix
- Collectd
- Cacti
- Syslog
- BACNet
- WAF

Data Application

- Global / Detail View
- Statistics & Reports
- Resource Management
- Anomaly Detection

Database

- Elasticsearch
- Graphite
- Influxdb

Data Processing Layer

- Feature Extraction
- Correlation Analysis
- Fault Identification
- Policy Enforcement
- Instant Alert

Data Caching Layer (aggregation & caching)

- Message Queue

Configuration Center

- ACL
- Backup
- Alarm
- Decision Model
- Expert System
- Collection Configuration

Resource Scheduling Model

- Kubernetes
- Prometheus

Resource Allocation

- Service Exposure
- Alarm Management

Network

- Computing
- Storage
- Network
- OS
- User behavior
- VM
- Server
- Switch
- Security
- Power
- Env
Platform Function Realization (1/4)

- Comprehensive data collection
 - Managed by Collect Control Platform
 - Collect information from nodes and upload to the aggregation module
 - Collected by the traditional monitoring server and forwarded to the aggregation module
 - Easily add or remove new acquisition events
 - Flexible adjustment of the covered node range
 - Data collection status alarm
Platform Function Realization (2/4)

- Flexible and efficient analysis
 - Supported by Apache Spark on k8s with Operator
 - The Spark Operator project was developed by Google and is now an open-source project. It uses Kubernetes Custom Resource for specifying, running and surfacing the status of Spark Applications.
 - Supports collecting and exporting application-level metrics and driver/executor metrics to Prometheus.
 - Configurable restart policy. Scalability, Reliability, Portability
 - Offers us more powerful and stable analysis capabilities and more convenient management
 - Data analysis scripts and dependent analysis environments are deployed on CVMFS. Make sure that the Executor is correctly attached to these paths, and the task can run normally.
Platform Function Realization (3/4)

- Real-time multi-channel message notification
 - Supported by Apache Spark
 - Receive push requests from multiple channels based on kafka.
 - Support rich message push channels such as SMS, Wechat, Email, etc.
 - Support alarm grouping, prevent repeated alarms, etc.
 - Provide fully searchable message history.
 - Convenient alarm contact configuration
Platform Function Realization (4/4)

- Powerful Data Warehouse
 - Supported by Elasticsearch Cluster and other Database on k8s
 - Efficient data query, divide node roles to handle read and write requests respectively
 - Support data disaster recovery, multiple copies, stored in 3 different node zone
 - Rich data API interface, providing complex query result output based on Django
 - Automatic management of the whole life cycle of index data (with Castor)
 - Forward data flow: Writable hot data (read-write mode + SSD) -> read-only hot data (read-only mode + SSD) -> read-only warm data (read-only mode + mechanical disk) -> read-only cold Data (read-only mode + disk array) -> snapshot backup (does not support query + tape storage)
 - Reverse data flow: snapshot backup (does not support query + tape storage) export -> import database (read-only mode + support query + disk storage) -> provide search service
Platform Performance

- Platform performance
 - Maximum data collection capability ~150k doc/s
 - Covering 5k+ nodes in Beijing and remote-site resource sites
 - Average data processing ~60k doc/s Data processing delay ~5s (Spark Streaming on K8s)
 - Maximum data indexing rate ~180k doc/s (44 nodes ES cluster on K8s)
 - Covering 400+ types of operation and maintenance data metrics

| ihepomat | 44 nodes | 500 indices | 1,625 shards | 57,687,481,703 docs | 27.24TB |
Outline

• Computing platform @IHEP
• Challenges & Goals
• Open maintenance analysis platform
• Typical application case
• Summary & Next plan
Comprehensive monitoring of IHEP

- **Monitoring field**
 - Engine room power environment, PUE
 - Hardware devices, virtual machines, containers
 - System, storage, network performance
 - Job scheduling, job data access behavior, resource management
 - Security authentication, user behavior, network attack
 - Remote site monitoring and other application scenarios
Improve the success rate of user jobs

• Key factors affecting jobs
 • System service exception (Environmental factors)
 • Job program exceptions (Human factors)

• Intelligent maintenance applications are designed to solve these problems
 • Automated cpu resource pool management with quick error detected and responded
 • Anomaly Detection of I/O behaviors based on unsupervised machine learning
System environmental abnormal (1/2)

• Quick error detected and responded
 • Deal with
 • Unexpected error happened to work node or servers could cause huge jobs failed
 • OMAT detects error in less than 5 sec
 • OMAT inform the job scheduler to evict the error in less than 5 sec
 • Only those job which related to the error will not be dispatched to the error nodes
 • Effect
 • Help the whole computing platform more stable
 • Maximize resource utilization

Detail info at https://indico4.twgrid.org/event/14/contributions/360/
Real-time collect whole service status of all work node
 - 50K service status covering 1.5k nodes
Quickly detect the restored services and new abnormal services.
Analyze and generate new sharing strategy.
Based on the high concurrency framework, quickly update multiple node policy files.
User job abnormally (1/2)

• Problems
 • One or two user abnormal IO behavior could affect the whole file system performance
 • Slow down user normal file access
 • Crash the file servers
 • Traditional way is to analysis storage servers logs, load alarms, and backtracking workflows manually
 • Big MTTR (Mean Time to Restoration), typically in hours

• New solution -- a direct and automatic way of problematic I/O detection
 • Machine learning based on the “big data collected from the whole platform” by OMAT
 • Reduce MTTR less than 10 mins

Detail info at https://indico.cern.ch/event/855454/contributions/4605258/
User job abnormally (2/2)

- Collect and analyze the I/O pattern characteristics of the job from Server by OMAT
 - 30,000+ jobs in parallel, generating an average of 200,000 file access behavior metrics per second (open, read, seek, write, close...)
- Build proprietary I/O database for each experiment
- Use unsupervised learning algorithms such as isolation forests to find jobs with abnormal I/O behavior.
Outline

• Computing platform @IHEP
• Challenges & Goals
• Open maintenance analysis platform
• Typical application case
• Summary & Next plan
Summary & Next plan

• Summary
 • Designed and implemented a set of data center intelligent operation and maintenance system, realized the value evolution of massive maintenance data, and solved the increasingly complex maintenance problems of large-scale data centers.
 • The monitoring platform was deployed at IHEP-CC in 2018 and migrated to the container environment at the beginning of last year.
 • Ensure the stable operation of the computing platform.

• Next Plan
 • Build a rich database of abnormal maintenance features, and combine machine learning algorithms to provide intelligent analysis services.
Thanks for your attentions!