Research and implementation of IHEP Network

performance analysis platform

on behalf of IHEP network group Funded by NSFC (No. 12175258)

zengshan@ihep.ac.cn 3-25-2022

Outline

Background

- IHEP network overview
- Platform architecture
- Analysis method and process
- Use cases
- Future plan
- Summary

Background

ISGC 2022

- More and more large scientific facilities are being built or running in IHEP
- Network becomes more and more important in:
 - Data transferring from onsite to offline data center
 - Offline data analysis: computing and storage
- More features are needed in high performance network
 - Design philosophy
 - High bandwidth and low latency
 - Stable, scalable and Flexible
 - Performance visualization ability
 - Network Performance analysis bind with application performance
 - Network capabilities by real-time analysis

IHEP network overview

- Data center network
 - Backbone bandwidth: 800Gb/s
 - Support IP/IB network

ISGC 2022

Network monitoring tools and methods

Network device status monitoring

- Port up/down
- Port traffic
- Zabbix/cacti/nagios

Connectivity monitoring

– Loss

- Latency
- PerfSonar

Lack the network performance analysis related to application performance

Platform architecture

What we get?

- Network traffic
- Communication raw packet

Where are they from?

- Network traffic: router/core switch traffic mirror
- Communication raw packet: tcpdump

How we did?

- Real-time processing
 - Rule matching
 - 7-layer analysis
- Application related traffic and packet analysis
 - Full traffic
- Data warehouse
 - MongoDB: Detailed data
 - PostgreSQL: Communication packet

nProbe cento

- nProbe is both a netFlow v5/v9/IPFIX Probe and a collector that can be used to play with NetFlow flows for IPv4/v6
- nProbe cento is a 1/10/40/100 Gbit NetFlow/IPFIX Probe, traffic classifier, and packet shunter
 - A high-speed NetFlow probe able to keep up with 1/10/40/100 Gbit.
 - Flow export to JSON, Text, Kafka, Syslog, ntopng
 - Native PF_RING and PF_RING ZC support for high-speed packet processing
 - Flow-based Load Balancing to IDS/IPS

 Layer-7 application visibility using nDPI (Deep Packet Inspection) or micro-nDPI (a lightweight DPI library supporting the most important protocols such as HTTP/HTTPS/DNS) for improved performance

19

Flow-based Load Balancing to IDS/IPS

Probe and Flow Exporter

Netflow analysis process

- Analyze incoming and outgoing traffic of high-energy physics experiments in IHEP
- Including: CMS/ATLAS/LHCb/JUNO
- Right now focus on the IPv4 traffic
 - Mirror the router traffic to analysis node
 - Capture and store the traffic in the analysis node by nfcapd
 - nfcapd_file/IHEP/2022/03/18/nfcapd.202203180827
 - Dump the nfcapd file by nfdump
 - Classify experiments by IP peers and ports
 - Calculate traffic count by cluster analysis
 - Export the result to elasticsearch
 - Shown in Grafana dashboard

Use case

JUNO data exchange rate of IHEP

LHCb

ATLAS ~

Data center application performance analysis from network view

Bypass deployment

- Mirror key network traffic
- Analyze the traffic by a probe

Performance metrics

- Connection established analysis
 - Amount of retransmission
 - TCP retransmission rate
- Response time
 - Server response time
 - Client response time
 - Service response time
- Latency
 - Server latency
 - Client latency
- Load analysis
 - Amount of concurrency

Key technologies of analysis probe (I)

High performance real-time processing

- Based on TCP/IP session
- Application and service matching through five-tuple information

Key technologies of analysis probe (II)

Use case

〓 流量精分

开始: 2021-10-28 15:35:00 结束: 2021-10-28 15:45:00 快速査询 🗸

KPI统计时间:2021-10-28 15:35:00~2021-10-28 15:45:00 后退

接口1(高能所)-EOS 服务_接口1

柱状图 🗸 🔹

🔍 admin 🔻 👫 🗎

	P会话															▼搜索IP或端口	Q			
	源IP	目的IP	平均速率	总数据包	客户端包数	服务器包数	平均包长	丢包总数	客户端丢包数量	服务器丢包数量	零窗口	客户端零窗口	服务器零窗口	重传数量	客户端重传数量	服务器重传数量	重传率	客户端重传率	服务器重传率	RST数量
	02.122.33.19	<u>197.168.99.93</u>	28.9Mbps	2256810	600200	1656610	960B	80	0	80	0	0	0	978031	184318	793713	5.27%	30.7%	21.98%	0
□排除	202.122.33.193	<u>192.168.99.93</u>	379bps	82	42	40	347B	0	0	0	0	0	0	34	15	19	41.46%	35.71%	47.5%	0
□排除	<u>202.122.33.191</u>	<u>192.168.99.93</u>	7.0Kbps	930	397	533	566B	0	0	0	0	0	0	385	128	257	41.39%	32.24%	48.21%	0
	202.122.33.190	<u>192.168.99.93</u>	Eos ser	$\operatorname{ver}_{_{4391}}$	474	3917	1319B	2	1	1	0	0	0	1240	86	1154	28.23%	18.14%	29.46%	0
	202.122.33.186	<u>192.168.99.93</u>	9.2Mbps	464867	14864	450003	1480B	6	0	6	0	0	0	127237	2114	125123	27.37%	14.22%	27.8%	0
Logi	n node	<u>192.168.99.93</u>	14.1Kbps	713	696	17	1478B	0	0	0	0	0	0	0	0	0	0.0%	0.0%	0.0%	0

-bash-4.2\$ ifconfig eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500 inet 202.122.33.197 netmask 255.255.255.128 broadcast 202.122.33.255 inet6 2401:de00:2:332::197

inet6 fe80::f603:43ff:feb2:

ether f4:03:43:b2:1a:d0 tx

High load on NIC

0 IP地址

RX packets 125710897691 by cs 1025200 (105.0 11b) RX errors 264218 dropped 0 overruns 260449 frame 3769 TX packets 62821802614 bytes 79978806707632 (72.7 TiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 device interrupt 16 memory 0x93800000-93ffffff

ISGC 2022

Future plan

IPv6 network traffic analysis based on experiments

Deep and detailed data center network performance will be analyzed

- More application/service performance will be considered and combined
- Backtracking will be added

Cross data center network performance analysis

- More metrics will be considered and designed

Dashboard should be optimized

Conclusion

- The purpose is to find the bottleneck of application performance
- IHEP started to research and implement the platform since the middle of last year
 - Architecture design is finished
 - Some functions have been developed, such as WAN traffic analysis and DC application performance monitoring
 - More functions can be added since we capture enough traffic and packets

Future work

- IPv6 network traffic analysis based on experiments
- Deep and detailed data center network performance will be analyzed
- More metrics will be considered and designed
- Any suggestions and cooperation are welcomed

Thanks for your attention