
Effective open-science practices for
organizing a scientific software repository

Teixeira JMC, Bonvin AMJJ
Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University,

Padualaan 8, 3584 CH Utrecht, the Netherlands

The way we develop scientific software has drastically evolved, especially in recent years, from

“scripts in a folder” to open source projects deposited in worldwide distributed community platforms.

This paradigm change occurred because we, developers of scientific software, felt an increasing need

to unite efforts and resources among the community. The surge of new online platforms, such as

GitHub or GitLab, made this leap also possible (or was it the other way around?). Software

developers and users can now interact in ways never seen before, boosting the development of

projects and sparking discussions to the “commit” resolution. However, with great power comes

greater responsibility. Having our code open to the wild facilitates usability and promotes collaboration

and progress. But, despite most of the research projects being now open source, there is still a huge

leap between a source/project that is open and a source/project that is usable and that others can

build upon. In other words, we need our house clean for guests to feel comfortable and make the

magic happen. Users and other developers (and our future selves) expect our project to be readable,

understandable, operable, modifiable, testable. Therefore, embracing an open-source community

means adopting best organizing practices if we wish our repository to shine, our community to grow,

and our project to thrive. But, what are “best practices”? We refer to “best practices” as any behavior

we do today that naturally solves or avoids problems in the future. Repository organizing practices are

agnostic to the project scope, hence can be adopted by anyone, and englobe source organization,

documentation, versioning, contributing guidelines, traceability (issues and pull requests), testing, and

CI/CD. As we will discuss: source organization communicates where implementations reside and

where new ones should be placed; documentation tells you everything and should be versioned as

well; traceability is crucial to maintain a cohesive community and register history; testing makes you

sleep well at night (aim beyond 100% coverage); CI/CD “saves” you countless time and from

forgot-the-keys situations; versioning defines API expectations and grant full-reproducibility.



Maintaining such practices takes effort (at the beginning way beyond coding); yet, we shouldn’t see

them as a pain in the neck but as a relief, for us to sleep well at night, knowing everything is perfect.

We should rewire our brains to dislike chaotic practices naturally. To share our experience in effective

good practices, we selected two of our repositories HADDOCK3 and pdb-tools projects, because we

believe learning by example is an excellent practice in the field of open science. Utrecht University

recently awarded our pdb-tools package the AWESOME SOFTWARE badge, meaning it considered it

among top packages regarding openness, reusability, and transparency, following FAIR principles and

Open Science spirit. You can find HADDOCK3 and pdb-tools in the links below:

https://github.com/haddocking/haddock3 ● https://github.com/haddocking/pdb-tools

Keywords: Python, Software, Open-Source, Best-Practices, CI/CD, Teamwork, GitHub

https://github.com/haddocking/haddock3
https://github.com/haddocking/pdb-tools

