ISGC 2022, Mar. 21 ~ 25, 2022

A study of dark photon at e^+e^- colliders using KISTI-5 supercomputer

Mar. 24, 2022

Kihong Park and Kihyeon Cho*

UST and KISTI

* Corresponding author

Contents

- 1. Motivation
- 2. Flowchart
- 3. Theory
- 4. A'A' and $A'A'\gamma$
- 5. Results
- 6. Summary

1. Motivation

Motivation

- Dark Matter(DM) cannot be explained by the Standard Model(SM).
- Because DM has a small cross-section, a large amount of simulation data must be generated.
- Therefore, efficient research on HPC(High Performance Computing) is required.
- In the previous study, we have studied on CPU time consumed for simulation.
- Based on this result, we have effectively used the KISTI-5 supercomputer for HPC.
- We have studied double dark photons produced by e^+e^- colliders.
- Double dark photon mode is $e^+ e^- \rightarrow A'A'$ and $A'A'\gamma$ with each A' decays into dimuon.
- To know ISR effect, we have also included ISR photon for double dark photon mode.

Current and future e^+e^- colliders

	Experiments	Туре	Type CM energy [GeV]	
Belle II (2017~, KEK/Japan)	Belle II	Circular	10.58 (<i>e</i> ⁺ : 4, <i>e</i> ⁻ : 7)	3.0116
FCC-ee (2038~, CERN/Switzerland)	FCC-ee (Future circular collider)		92 (e [±] : 45.5)	
		Circular	240 (e [±] : 125) 97	97.75
Future Circular Collider Image copyright CERN			366 (e [±] :175)	
(2030~, IHEP/China)	CEPC		92 (e [±] :45.5)	
Provide and a second se	(Circular electron positron collider)	Linear	240 (e [±] :120)	100
LLC (2034~, Japan)			250 (e [±] :125)	
the second second	(International linear collider)	Linear	500 (e [±] :250)	20.5 31
International Linear Collider From WIKI				PDG 2020

2. Flowchart

Flow chart of softwares and hardwares

	į			
Specification	KISTI-5 KNL	KISTI-5 SKL	Local machine	
OS	CentOS 7.4	CentOS 7.4	Scientific Linux 6.5	
Processor	Intel Xeon Phi 7250 1.4 GHz	Intel Xeon Skylake (Gold 6148) 2.4 GHz	Intel Xeon CPU X5560 2.8 GHz	
Architecture	Many-core	Multicore	Multicore	
Number of cores/CPU	68	20	4	
Number of CPUs/node	1	2	8	
Number of cores/node	68	40	32	
Number of total nodes	8,305	132	1	
Number of total cores	564,740	5,280	32	

[1] Kihong Park and Kihyeon Cho, J. Astron. Space Sci. 38 (2021) 55-63.[2] Kihong Park, Kyungho Kim, Kihyeon Cho, J. Astron. Space Sci. 39 (2022) 1-10.

Process of stand-alone frame analysis

Processing	Software	Code	Input file	Output file	
I. Event generation	MadGraph5	mg5_apap.mac	model: simplified model	unweighed_events.lhe.gz	
II. Detector simulation	MadAnalysis5 (Delphes)		unweighed_events.lhe.gz	cms_edited_0.3_ new.root	
III. Reconstruction	MadAnalysis5	ma5_apap_rl.mac	unweighed_events.lhe.gz (Parton level)	selection_1.C (histogram macros, etc)	
IV. Fitting	RooFit	belle2_reco.c	selection_1.C (as data)	belle2_mass_reco.png	

$e^+ e^- \rightarrow A'A'$ and $A'A'\gamma$ with $A' \rightarrow \mu^+\mu^-$

Feynman diagrams of double dark photon mode [3, 4]

Simplified model [5, 6]

- The SM particles + Dark Matter
 + Mediator particles (dark photon)
- A': dark photon with spin1
- Imported in MadGraph5

[5] Daniele, et al., Alves, *Journal of Physics G*. Nuclear and Particle Physics, 39(10) (2012) 105005.
 [6] Kentarou Mawatari's ppt (KAIST-KAIX workshop 07/15/19).

4. A'A' and $A'A'\gamma$

Background(SM) mode

- We have used SM as a background.
- The background(SM) mode are $e^+ e^- \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ and $e^+ e^- \rightarrow \mu^+ \mu^- \mu^+ \mu^- \gamma$.
- Parameters of background(SM) mode

Specifications	$e^+e^- ightarrow \mu^+\mu^-\mu^+\mu^-$	$e^+e^- ightarrow \mu^+\mu^-\mu^+\mu^-\gamma$	
Machine	KISTI-5 supercomputer		
Simulation	MadGraph5 v2.6.6		
Importing model	The standard model (default)		
Command	generate e+ e- > mu+ mu- mu+ mu-	generate e+ e- > mu+ mu- mu+ mu- a	
Condition	$p_{T,\mu} \geq 0.01~GeV$, $p_{T,\gamma} \geq 0.01~GeV$		
Number of generated events	10,000		
CM energy [GeV]	1, 2,, 9, 10, 20,, 490, 500, 600, 700,, 2,900, 3,000		

• The minimum transverse momentum cuts for photons and leptons are set to 0.01 in order to generate events at energies less than 40 GeV.

Dominant Feynman diagrams

Double dark photon mode

- Double dark photon mode are $e^+e^- \rightarrow A'A'$ and $e^+e^- \rightarrow A'A'\gamma$ where each A' decays into dimuon.
- Parameters of Double dark photon mode

Specifications	$e^+e^- ightarrow A'A'$	$e^+e^- ightarrow A'A'\gamma$	
Machine	KISTI-5 supercomputer		
Simulation	MadGraph5 v2.6.6		
Importing model	Simplified model		
Command	generate e+e- > y1y1, y1 > mu+ mu- generate e+e- > y1y1, y1 > mu+		
Condition	$p_{T,\mu} \geq 0.01~GeV$, $p_{T,\gamma} \geq 0.01~GeV$		
Number of generated events	10,000		
CM energy [GeV]	1, 2,, 9, 10, 20,, 490, 500, 600, 700,, 2,900, 3,000		
Dark photon mass [GeV]	0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0, 25.0, 50.0, 75.0, 100.0		
Dark photon decay width [GeV]	6.7×10 ⁻⁶ GeV		
Coupling constant	0.0001, 0.00025, 0.0005, 0.00075,	0.001,, 0.1, 0.25, 0.5, 0.75, 1.0	

• The minimum transverse momentum cuts for photons and leptons are set to 0.01 in order to generate events at energies less than 40 GeV.

Feynman diagrams of Double dark photon mode

- Red vertical lines denote CM energy of experiments.
- We applied these CM energies to reconstruction for both $e^+ e^- \rightarrow A'A'$ and $e^+ e^- \rightarrow A'A'\gamma$.

Cross-section depending on dark photon mass

<u> 응</u>18¹

5

ő

10

10

10-1

10-24

10-28

10-3

10-5

- Red vertical lines show dark photon masses which have the maximum cross-section. ٠
- We have applied these dark photon masses to reconstruction in order to estimate the • maximum expected number of double dark photon events.

Cross-section depending on coupling constant

10-3

10-4

uul

10-2

11111

10-1

 $e^+e^- \rightarrow A'A'\gamma$ with $A' \rightarrow \mu^+\mu^-$

5. Results

Reconstruction

- In order to fine the best CM energy for $e^+ e^- \rightarrow A'A'$ and $e^+ e^- \rightarrow A'A'\gamma$. we have studied the detector efficiency.
- Delphes was used to perform detector simulation.
- MadAnlaysis5 was used for reconstruction.
- Parameters of reconstruction

Specifications	Details		
Number of generated events	1,000,000		
Machine	Local Linux machine		
Simulation tool kit	Delphes, MadAnalysis5		
Condition	$p_{T,\mu} \geq 0.01~GeV$, $p_{T,\gamma} \geq 0.01~GeV$		
Coupling constant	0.1		
Fitting (function)	RooFit (2 Gaussian + 1th order polynomial) for $e^+ e^- \rightarrow A'A'$ RooFit (2 Bifurgaussian + 1th order polynomial) for $e^+ e^- \rightarrow A'A'\gamma$		

• The minimum transverse momentum cuts for photons and leptons are set to 0.01 in order to generate events at energies less than 40 GeV.

Reconstructed parameters of $e^+ e^- \rightarrow A'A'$ and $e^+ e^- \rightarrow A'A'\gamma$

	Experiments	CM energy [GeV]	Dark photon mass (width) [GeV]	Detector η cut	Delphes card
Belle II (2017~, KEK/Japan)	Belle II	10.58 (e ⁺ :4,e ⁻ :7)	5 (6.7 ×10 ⁻⁶)	$-1.317 \le \eta \le 1.901$	delphes_card_CMS.tcl $(\eta \text{ cut for Belle II})$
FCC-ee (2038~, CERN/Switzerland)	FCC-ee (Future circular collider)	91 (e [±] : 45.5)	25 (6.7 ×10 ⁻⁶)	$-3.0 \le \eta \le 3.0$	
Dury Golder Dier Dier Dier Die Die Die Die Die Die Die Die Die Die		160 (e [±] : 80)	75 (6.7 ×10 ⁻⁶)		delphes_card_IDEA.tcl
		250 (e [±] : 125)	100 (6.7 ×10 ⁻⁶)		
Future Circular Collider Image copyright CERN CEPC		350 (e [±] :175)	100 (6.7 ×10 ⁻⁶)		
(2030~, IHEP/China)	CEPC (Circular electron positron collider)	91 (e [±] :45.5)	25 (6.7 ×10 ⁻⁶)	$-3.0 \le \eta \le 3.0$	delphes_card_CEPC.tcl
		160 (e [±] :80)	75 (6.7 ×10 ⁻⁶)		
		240 (e [±] :120)	100 (6.7 ×10 ⁻⁶)		
ILC (2034~, Japan)		250 (e [±] :125)	100 (6.7 ×10 ⁻⁶)	$-2.4 \le \eta \le 2.4$	delphes_card_ILD.tcl
International Linear Collider	ILC (International linear	500 (e [±] :250)	100 (6.7 ×10 ⁻⁶)		
	collider)	1000 (e [±] :500)	100 (6.7 ×10 ⁻⁶)		

• Dark photon masses are selected where it has the maximum cross-section (p15).

$e^+ e^- \rightarrow A'A'$ with $A' \rightarrow \mu^+ \mu^-$

$e^+ e^- \rightarrow A'A'$ at FCC-ee 91 GeV (1/3)

$e^+ e^- \rightarrow A'A'$ at FCC-ee 91 GeV (2/3)

$e^+ e^- \rightarrow A'A'$ at FCC-ee 91 GeV (3/3)

Signal events of $e^+ e^- \rightarrow A'A'$ (1/3)

Signal events of $e^+ e^- \rightarrow A'A'$ (2/3)

Signal events of $e^+ e^- \rightarrow A'A'$ (3/3)

Detector efficiency of $e^+ e^- \rightarrow A'A'$

• In this $e^+e^- \rightarrow A'A'$ mode, CEPC shows the highest detector efficiency among experiments.

$e^+ e^- \rightarrow A' A' \gamma$ with $A' \rightarrow \mu^+ \mu^-$

$e^+ e^- \rightarrow A' A' \gamma$ at FCC-ee 91 GeV

Signal events of $e^+ e^- \rightarrow A' A' \gamma$ (1/3)

Signal events of $e^+ e^- \rightarrow A' A' \gamma$ (2/3)

Signal events of $e^+ e^- \rightarrow A' A' \gamma$ (3/3)

Detector efficiency of $e^+ e^- \rightarrow A' A' \gamma$

• In this $e^+ e^- \rightarrow A' A' \gamma$ mode, CEPC shows the highest detector efficiency among experiments.

Summary

- DM research requires a large amount of computing resources to process big data and simulations.
- In the previous study, we had researched a single dark photon using HPC so that we found the optimization for it.
- Based on this information, we have effectively studied double dark photons produced by e⁺e⁻ colliders for using HPC.
- In order to search for double dark photons at e⁺e⁻ colliders, we have reported the expected number of events considering detector efficiency.
- The results will help to explore double dark photon events for various e⁺e⁻ colliders.

ACKNOWLEDGMENTS

- Kyungho Kim
- The National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F 1A1064008)
- The National Supercomputing Center with supercomputing resources, including technical support