Flavor Tagging using Machine Learning

Masahiro Morinaga

The University of Tokyo 🛠 (ICEPP 🟵,Beyond Al ⁄ i)

🟶 🟵 🏹 Masahiro Morinaga

What is Flavor Tagging?

Jet Flavor

- QCD jets are originated from qurak or gluon decay products.
- Tagging jet flavor is important technology to improve analysis sensitivity
- Quark and Gluon:
 - Gluon : A lot of decay products
 - Light flavor : u, d, s-quark
 - \circ Heavy flavor : c, b-quark
- W/Z boson, Higgs, Top tagging :
 - \circ Using large R-jet can identify jet if particle is boosted
 - $\circ~$ Only higher $p_{
 m T}$

Heavy Flavor Tagging

- Rely on secondary vertex from B-meson or D-meson decay
 - b-quark : $b \to B \to D \to K$
 - c-quark : $c \rightarrow D \rightarrow K$
- ML : BDT, CNN, RNN, DeepSets, Graph NN

Quark/Gluon Tagging

- Separation between light flavor and gluon
- Rely on #of track or similar variables
- ML : Graph or similar specialized model(ParticleNet, Lorentz Group NN)

Strategy

Problem

- Specialized model is too difficult to use it in experiment
- Jet kinematics dependency
 - $\circ~$ Existing Q/G tagger has performance only at higher $p_{
 m T}$
 - *b*-tagging rely on track property
- Q/G tagger and *b*-tagger are different algorithm.

Aim of this study

- Developing pratical neural network using model that is popular in ML community
- Less dependency for jet kinematic variables usuing FiLM module
- All-in-one tagger including b, c-tagging and Q/G-tagging
 - Classify light-flavor, gluon-jet, *c*-jet, *b*-jet simultaniously
 - Same model or method can be applied for large R-jet tagger(W, Z, t, H)
- Expect better performance at higher p_{T} by using calorimeter information
- Using extreamly high stat sample

Jet Image

Jet Image

• Making jet image from constituents of jet (track, calo cluster),

- Jet image : tracks and calo clusters inside of jet ($\Delta R=0.4$)
- Image size is 32 x 32 with five channels:
 - 1st : Count of track
 - 2nd : Count of EM calo cluster
 - 3rd : Count of Had calo cluster
 - \circ 4th : p_{T} of 1-3 layers
 - 5th : sum of d_0 value of track
 - \circ d_0 : transverse impact parameter of track

gMLP : Gated Multi Layer Perceptron

- Recently models which has no convulution are popular and have great performance
 - Vision Transformer(ViT), MLP-like(MLPMixer, gMLP, etc..)
- gMLP is used in this study
 - Similar performance with other models, but gMLP is faster than others.
- Making patch from one image, and pass it to FFC and Spatial Gatin Unit
- Spatial Gating Unit : Gating unit that learn spatial relation among cross-token

Model Architechture

Model

- Feature extractor : main component, which extract unique feature
- FiLM module : General conditional layer
- Classifier : simple MLP to classify all flavors

gMLP as MetaFormer

- Four gMLP Blocks with different patch size
 - Increase patch size $2x2 \rightarrow 4x4 \rightarrow 8x8 \rightarrow 16x16$
 - $\circ~$ Increase inner feature dimention $64 \rightarrow 128 \rightarrow 256 \rightarrow 512$

FiLM : Feature Wise Linear Modulation

• image from <u>here</u>

Decorrelation using FiLM

- In order to remove/reduce correlation between output score and jet kinematics(jet property, $p_{\rm T}$, η , #of track...), <u>FiLM</u> layer is utilized.
- FiLM is General conditional layer that can
- FiLM $(F|\gamma,\beta)$ = $\gamma * F + \beta$
 - *F* : output of layer, e.g. convolution, linear...
 - γ, β : affin parameters of FiLM layer, (γ, β lt learnable parameters)
- Performance of q/g-tagging, b/c-tagging depends on p_T or #of track
- Removing this correlation is worth to try
 - \circ Just one training for different p_{T} or η region.
 - Expect imporvement of data and background comparison.
- Classification performance might be reduced \rightarrow trade off between

Training Samples

- Delphes are used in this study with ATLAS geometry
 - MG5_aMC of v3.2.0 w/ Pythia8
 - Delphes with ATLAS no pileup card using pflow based jets
- Generate $pp
 ightarrow gg, uar{u}, uar{u}, dar{d}, sar{s}, car{c}, bar{b}$
 - $\circ~$ Selection : $p_{
 m T}>20$ GeV and $|\eta|<2.4$
 - Truth label : labeled as production mode

Image Preprocessing

Preprocessing

- Similar preprocessing is applied as <u>this paper</u>
 - Without rotation, just normalize pixels
- Pixel normalization : $I_{i,j,k}'(s) o (I_{i,j,k}(s) \mu_{i,j,k}) / \sigma_{i,j,k}$
 - μ, σ is mean, standard deviation of each pixel, which is sum over all samples.

Image Preprocessing

Preprocessing

- Same preprocessing is applied
- Pixel normalization : $I_{i,j,k}'(s) o (I_{i,j,k}(s) \mu_{i,j,k}) / \sigma_{i,j,k}$
 - μ, σ is mean, standard deviation of each pixel, which is sum over all samples.

s-jet can be classified?

- s-jet looks not similar u/d-jet ightarrow due to effect of K^0_S decay
 - $\circ \ K^0_S$ is long-lived (~few cm) $ightarrow d_0$ would be relatively large
 - $\circ \ K^0_S o \pi^\pm \pi^\mp$: More energy depostion at hadron calorimeter.
- If s-jet tagging can be performed then:
 - $\circ \ \ {\rm Measurement} \ {\rm of} \ W \to cs \ {\rm decay}$
 - $\circ~$ W/Z-tagging using resolved two jets (W
 ightarrow cs/ud or Z
 ightarrow qq)
 - $\circ~~H^+
 ightarrow car{s}?$

Training Setup

Training setup

- Optimizer: RAdam
 - L2 norm : wieght decay = 1.0e-3
- Learning rate : CosineAnnealingWarmupRestarts
 - lr: 1.0e-03 to 1.0e-06 ,
 - wramup : 5 epoch
- Epoch : 100 epoch with early stopping
 - Early stopping : patience = 20
- Loss : <u>Class balanced CE loss</u>, without this correction
 - β : balanced parameter is 0.9999
- Batch size : default is 2048 .
- Training sample: 2**22 = 4,194,304 sample per jet flavor
- Validation(test) sample : 10% of training samples
- NVidia A100 GPU x 8 parallel distributed training
- Pytorch is used

- Left : Loss curve as a function of training epochs
- Right : Accuracies for all flavors as a function of training epochs
- Training looks helthy, no overfitting.
- *c*-jet accuracy is imporving a lot against training epochs.

Performance

Purity g-jet - 54.1% 14.5% 13.6% 2.5% 1.0% ud-jet - 19.4% 48.6% 30.7% 1.4% 0.3% **True** label s-jet - 19.4% 32.7% 48.7% 2.0% 0.5% c-jet-5.1% 3.4% 5.8% 10.6% b-jet-2.1% 0.7% 1.3% 15.5% oilet silet ilet pilet Jdilet Predicted label

- Confusion matrix:
 - Efficiency : Produced(truth) jet is classified as prediceted label
 - Purity : prurity of predicted label
- *b*, *c*-jet has good separation against all other flavors,
- s-jet and u/d-jet are not so separated, but it is worth to try and there are still room for improvements that haven't been tried

Performance

c-jet:AUC=0.91 10^{0} udsg-jet:AUC=0.99 udsgc-jet:AUC=0.97 10^{-1} False positive 10^{-2} 10^{-4} 10^{-5} 10^{-6} 0.0 0.2 0.4 0.6 0.8 1.0 True positive

- Left : ROC curve, each flavor against others
- Right : ROC cureve of b-jet against *c*-jet and udsg-jet, others.

Effect of FiLM Layer

- 2D histogram : x-axis: #of track, y-axis : g-jet score (gluon has strong dependency against the number of tracks)
- Each panel :
 - from top to bottom : ud,s,c,b,g-jet
 - from left to right : nominal 2D, 2D with profile of x-axis, 2D profile of y-axis
- Left : Without FiLM, Right : With FiLM \rightarrow can see clear imporvement

Conclusion and Feature Plan

Conclusion

- Flavor tagging with the jet-image was introduced and shown
- Model without convolution(CNN) works well and its result looks pretty promissing
- FiLM is worth to utilize in order to decorrelate output score and jet kinematics.

•

Plans

- Large-R jet tagging : Top, Higgs, W, Z boson tagging
- W, Z-tagging with resolved two jets
- Small-*R* jet tagging : tau hadronic decay

Backup

Samples : Constituents

- d_0 distribution for constituents of all flavors:
 - $\circ \ \ \mathsf{Indeed}, b\mathsf{-jet} > c\mathsf{-jet} > s, g\mathsf{-jet} > u, d\mathsf{-jet}$
- p_{T} distribution for constituents of all flavors:

Performance

- Left : ROC curve, each flavor against others
- Right : ROC cureve of b-jet against *c*-jet and udsg-jet, others.