Open-source and cloud-native solutions for managing and analyzing heterogeneous and sensitive clinical Data

Daniele Spiga INFN-Perugia
spiga@pg.infn.it
On behalf of PLANET Team
This Talk

Introduction to the PLANET project
- The use case

A Cloud native platform for heterogeneous data
- Requirements and technical goal
- Architecture overview

Status and next step
- Enhancement toward EPIC-Cloud integration

Summary

A highly multidisciplinary Team, Many diverse competences are needed.
- Pasquale Lubrano
- Davide Salomoni
- Mirco Tracolli
- Diego Ciangottini
- Giuseppe Ambrosio
- Fabrizio Stracci
- Paolo Reboldi
- Cristina Duma
- Alessandro Costantini
- Sara Cutini
- Diego Ciangottini
- Barbara Martelli
- Giusy Sergi
- Jacopo Gasparetto
- Loriano Storchi
- Elisabetta Ronchieri
The PLANET Project in a nutshell

PLANET (Pollution Lake ANalysis for Effective Therapy) a INFN-funded research initiative aiming at developing

- An observational (ecological) study to evaluate the association between air pollution and Covid19, taking care of a variety of components that are supposed to influence rates of SARS-COV-2 diffusion and infection
 - A synergy between INFN and epidemiological and medical knowledge University of Perugia

The study is based on the hypothesis that pollution may contribute to the spread and/or the severity of COVID-19, through 2 possible mechanisms:

- **Acute**: microparticles derived from fossil fuels might act as airborne carriers of virus;
- **Chronic**: exposure to microparticles and chemical pollutants might cause chronic lung injury, exacerbating the consequences of viral infection.
The Analysis Strategy

A key element of PLANET is to include a wide variety of components that are expected to influence rates of SARS-COV-2 diffusion and infection
- atmospheric data, population density, urban vs rural environment, mobility, socio-economic conditions…
- take into account also the fact that severity COVID-19 disease and deaths are also influenced by many variables (age, gender, comorbidities, frailty, etc..).

Current focus on Feature importance evaluation: assign a score to input features based on how useful they are at predicting a target variable (Covid19)
- Models such as: Random Forest; k-nearest neighbors;

![ScatterPlot predicted vs True](image)
INFN key expertise

INFN is a pioneer in the **design and implementation of large-scale computing infrastructures and applications**

- Primarily developed to meet the needs of the latest generations of high energy physics (HEP) experiments
- **now rapidly extending to other communities. INFN@PLANET:**
 - At this conference: [ML INFN](#); [CYGNO](#); [INFN-Cloud](#)

- **Data Analysis**
 To develop models and to implement statistical data analysis

- **Data Curation and Data Management**
 Organization and integration of data collected from heterogeneous sources; Enabling FAIR (Findable, Accessible, Interoperable, Reusable) data repositories

- **Integrated and Certified Computing Infrastructure**
 A ISO 27001 / 27017 Certified Data-Lake to manage confidential data (ISS, Hospital, ASL).
 An-easy-to-use computing platform fully integrated with the [INFN-Cloud national infrastructure](#).
Heterogeneous DataSet

Raw data collected so far by the project:
- Different types
- Different schemas
 - Data originally acquired with a different purpose from that for which they are used here

What matters here is mainly the variety, partially also the volume (i.e. pollutants data)
- In principle PLANET could manage data in "silos" or "Data Warehouses", but it is considered strategic to be proactive, moving towards more advanced approaches: the Data Lake is one of these
Main requirements and objectives

Use PLANET project as a case study to develop a generic, reusable and extendible platform in order to cope with:

- Structured and unstructured data archival
- **Data awareness.** What type, location…
 - Avoid data swamps, avoid dark data
- **Friendly interface** for a reduced time to insight
 - Reduce learning curve to inspect data
- Preserve data in its **original format**
- **Minimize human interactions** for repeated operations
 - Data validation, data pre-processing, cleaning

- **Open Source** and easy to maintain
 - Minimize ad hoc developments
- **Clear and Simple Design**
 - Scale and ease ops
- **Automation and self-healing**
 - System can react based on events
- Avoid multiple databases to keep in sync
 - Aiming to be Stateless
 - Enable the use of metadata
Toward a Data Lake model

- A data storage environment allow to keep data in their native format.
 - They remain in this condition until it is necessary to define a structure

- Enable automated data validation (and organization)

- Data scheme is defined at the time of analysis and not at the time of archiving
A Storage Centric Solution

Minio Storage solution has been chosen as core component to build our the cloud native solution

- S3 compliance, Powerful WebUI
- Proven scalability
- Native integration with AWS STS credentials, external OIDC IdP’s

Bucket notifications allow to send events to supported external services on certain object or bucket events

Metadata: writes and operates on metadata and data together to provide granularity at the level of individual objects

- Support for user defined metadata

Support for **customizable authorization policies** with OpenPolicyAgent
Connecting the dots..

- Metadata management and enrichment
- Stateless approach
- Automation (events and workflows), and self-healing
- Highly integration between data and compute
- Scope based AuthN/Z
Metadata enrichment

Uploader: a lightweight MinIO go client (CLI/GUI) utility to upload files and enrich related metadata.

MinIO stored metadata (example)

User defined metadata enrichment

MinIO metadata
Automated data validation through Argo Workflow

Every file uploaded to the PLANET DataLake is automatically validated

The EventSource: Each upload generate a Minio EVENT

```
spec:
  minio:
    example:
      endpoint: 'planet-store.cloud.cnaf.infn.it:9000'
      bucket:
        name: demo-raw
      accessKey:
        name: artifacts-minio
        key: accesskey
      secretKey:
        name: artifacts-minio
        key: secretkey
      events:
        - 's3:ObjectCreated:Put'
```

Argo Sensor detect the event and **trigger the validation**

```
triggers:
  - template:
      name: minio-workflow-trigger
      type:
        source:
          apiVersion: argoproj.io/vialpha1
          kind: Workflow
          metadata:
            generateName: artifact-workflow-2-
            namespace: argo-events
          spec:
            entrypoint: hook
            templates:
              - container:
                  args:
                    - THIS_WILL_BE_REPLACED
                  command:
                  - hook
                  env:
                    - name: ACCESSKEYID
                      value: admin-creds
                    - name: ENDPOINT
                      value: 'planet-store.cloud.cnaf.infn.it:9000'
                    - name: SECRETACCESSKEY
                      value: '223$1$401kss'
                    - name: 'dodasts/planet-demo-hook:v0'
                      imagePullPolicy: Always
                    - name: hook
```

A customizable validation function is automatically executed:

If metadata OK then:
- tell Minio to move data to the validated bucket
else
- tell MinIO to move data to triage & notify
fi
Integrated Analysis Platform

- A JupyterHub integration with MinIO and INDIGO-IAM Authorization Server is ready: embedded posix access is provided

- Partially ported within EPIC Cloud (Enhanced Privacy and Compliance Cloud)
Future evolution: The vision

To integrate and make available an "open" and generic and reusable platform EPIC compliant with the INFN Cloud ecosystem

[1]

- Integration of data from multiple information sources
- Processing (descriptive, predictive and real time analysis)
- Federation of computing resources through INFN-Cloud enabling technology

[1] see here
Summary and Conclusion

The PLANET project has been presented. A Multidisciplinary project aiming at analyzing heterogeneous and sensible data

- A generic cloud native platform for managing and enabling data analysis has been successful prototyped
- Highly centred on Metadata management and enrichment

The event based system for workflow automation represent a key element

- Further enhancement is expected with new used cases

There is an ongoing activity is moving the PLANET platform inside the EPIC-Cloud environment.

- To harden the current platform applying the technical measures required to improve the security of the whole system.