
Carmelo Pellegrino and Stefano Dal Pra - ISGC 2022 - 25/03/2022

Providing secure Interactive
access to the HTCondor batch
resources with JupyterHub
International Symposium on Grids & Clouds

• The Jupyter ecosystem

• JupyterHub and HTCondor

- batchspawner

• Implementation and security enforcements

- singularity

- custom batchspawner

• Additional features

- Custom readme file

- User-defined configuration file

- Persistency

Outline

2

The Jupyter ecosystem

• Jupyter stands for Julia, Python, R

• Providing a novel interaction method
initially for these languages, now supports
over 150 different systems (called kernels)

• The Jupyter Notebook is a web application
for creating and sharing computational
documents. It offers a simple, streamlined,
document-centric experience

• Block of code-oriented workflow

• Supports inline pictures, tables,
markdown-formatted text, etc...

• Everyone can run a notebook on its own
PC

https://jupyter.org/ - https://jupyter-notebook.readthedocs.io/en/latest/
Notebook

4

• The new evolution of Jupyter Notebook

• Much more mature, flexible and user-friendly experience

• Alternative but 
active by default

https://github.com/jupyterlab/jupyterlab
JupyterLab

5

• Multi-user installation

• Supports several authentication methods, named Authenticators

• Supports several Spawners, i.e. notebook providers (e.g.: local,
docker, batchspawner)

• Supports SSL both on the front-end and the back-end HTTP
channels

• Configuration via a Python script (a.k.a. config.py)

https://jupyterhub.readthedocs.io/en/latest
JupyterHub

6

• configurable-http-proxy is a proxy
of messages from and to the user's
browser to interface with the Hub and
the Notebooks

• Hub is interrogated by either the
proxy and the notebooks.

• The notebooks can run on remote
hosts. Expose a randomly generated
port. Each notebook tells to the Hub
which port it listens on. In turn the
Hub configures the Proxy to forward
user traffic to the notebook

https://jupyterhub.readthedocs.io/en/stable/getting-started/networking-basics.html

Network basics

7

credits: https://jupyterhub.readthedocs.io/en/0.9.1/

• On notebook submit, JupyterHub creates a unique token and
passes it to the notebook

• The notebook uses the token to autenticate back to the Hub

• This token has to be kept secure!

Notebook authentication

8

JupyterHub and
HTCondor

• Is an implementation of the Spawner Python class

• Handles the interaction with several batch systems:

- LSF, Slurm, PBS, Torque, ..., HTCondor

• Can configure, submit, poll, and remove remotely executed jobs
that run the notebook applications and interface them with the
user and the JupyterHub controls

https://github.com/jupyterhub/batchspawner
batchspawner

10

• The default submit file looks like:

• {cmd} is replaced by batchspawner with the notebook executable
and arguments

• Notebook authentication token is passed via environment variables (!)

• No HTCondor spool mechanism foreseen

batchspawner.CondorSpawner

11

Executable = /bin/sh
RequestMemory = {memory}
RequestCpus = {nprocs}
Arguments = \"-c 'exec {cmd}'\"
Remote_Initialdir = {homedir}
Output = {homedir}/.jupyterhub.condor.out
Error = {homedir}/.jupyterhub.condor.err
ShouldTransferFiles = False
GetEnv = True
{options}
Queue

• The Hub configuration is all handled at once in a Python script

• The following lines are to enable and configure the
CondorSpawner

batchspawner configuration

12

import batchspawner # mandatory
c.JupyterHub.spawner_class = 'batchspawner.CondorSpawner' # set the spawner class
c.CondorSpawner.ip = '0.0.0.0' # IP address to bind => any
c.CondorSpawner.http_timeout = 1800 # a reasonable timeout for the job
 # to be in RUN state

Implementation and
security enforcement

• Since several years, INFN-Tier1 local users ask the admins to support Jupyter notebooks

• Several autonomous and insecure attempts on Tier1 user interfaces by the users:

‣ always chased by the admins to prevent security incidents

‣ abuse of the resources in user interface

• Desiderata:

‣ allow notebook execution on dedicated resources

‣ accounting of the consumed CPU hours

‣ security

‣ avoid waste of unused computing resources

• The solution is https://jupyterhub-t1.cr.cnaf.infn.it

Why JupyterHub?
JupyterHub at INFN-Tier1

14

• A set of worker nodes is dedicated to run notebooks

• Jupyter jobs are forced to have a "recognisable" name:

• Job transform rule in the schedd configuration:

• JupyterHub authenticates the users via their LDAP uid and Krb5
password

Implementation

15

JOB_TRANSFORM_JupyterNotebook @=end
 REQUIREMENTS split(MY.JobBatchName, "-")[0] =?= "jupyter"
 if defined My.Requirements
 SET Requirements RegExp("wn-XX-YY", TARGET.Machine) && ($(MY.Requirements))
 else
 SET Requirements RegExp("wn-XX-YY", TARGET.Machine)
 endif
@end

condor_submit -spool -batch-name jupyter-$USER

• The notebook authentication token is passed via environment
variables

- accessible with a simple condor_q -af environment!

• Back-end communication (Hub <-> notebook) in plain HTTP

- no cryptography, the official batchspawner code doesn't
support SSL

• Direct interactive access to worker nodes can favour privilege
escalation due to slowly patched bugs

with the stock design
Security issues

16

• submit wrapper override

• remove GetEnv=true
from the submit file

• Write the needed
environment variables to
a file to be spooled

Securing the authentication token

17

#!/bin/sh

cd ~/

umask 0077

cat > env <<EOF
JUPYTERHUB_SERVER_NAME=$JUPYTERHUB_SERVER_NAME
JUPYTERHUB_SERVICE_PREFIX=$JUPYTERHUB_SERVICE_PREFIX
JUPYTERHUB_USER=$JUPYTERHUB_USER
JUPYTERHUB_API_TOKEN=$JUPYTERHUB_API_TOKEN
JUPYTERHUB_OAUTH_CALLBACK_URL=$JUPYTERHUB_OAUTH_CALLBACK_URL
JUPYTERHUB_BASE_URL=$JUPYTERHUB_BASE_URL
JUPYTERHUB_API_URL=$JUPYTERHUB_API_URL
JPY_API_TOKEN=$JPY_API_TOKEN
JUPYTERHUB_ACTIVITY_URL=$JUPYTERHUB_ACTIVITY_URL
JUPYTERHUB_HOST=$JUPYTERHUB_HOST
JUPYTERHUB_CLIENT_ID=$JUPYTERHUB_CLIENT_ID
JUPYTERHUB_ADMIN_ACCESS=$JUPYTERHUB_ADMIN_ACCESS
JUPYTERHUB_SSL_CLIENT_CA=/etc/jupyter/ca.pem
JUPYTERHUB_SSL_CERTFILE=/etc/jupyter/notebook.pem
JUPYTERHUB_SSL_KEYFILE=/etc/jupyter/notebook.key
EOF

condor_submit -spool -batch-name jupyter-$USER

c.CondorSpawner.batch_submit_cmd = '/etc/jupyterhub/submit_wrapper'

• Override the stock submit file in config.py

• The new submit file

Modified submit file

18

Executable = /bin/sh
Transfer_executable = False
Arguments = "-c '/usr/share/htc/jupyter/notebook.sh {cmd}'"
RequestMemory = 3500
RequestCpus = 1
Output = jupyterhub.condor.out
Error = jupyterhub.condor.err
transfer_input_files = env,notebook.pem,notebook.key,ca.pem,jupyter_notebook_config.py
encrypt_input_files = *
transfer_output_files = jupyter_notebook_config.py
periodic_remove = JobStatus == 2 && time() - EnteredCurrentStatus > 259200
{options}
Queue

with open("/etc/jupyterhub/submit_file") as submit_file:
 c.CondorSpawner.batch_script = submit_file.read()

• JupyterHub has all the facilities to secure the back-end
communications

• Enable "internal" SSL in config.py

• JupyterHub handles its own set of CAs

• The NotebookCA issues RSA keys and x509 certificates to each
user

• Key-cert user's pair is used by its notebook to provide TLS
communication

Securing the back-end communication

19

c.JupyterHub.internal_ssl = True

• The official batchspawner doesn't support internal SSL!

• Forked from the official GitHub repo

• Implements the move_certs() method of the batchspawner.CondorSpawner
class that copies cert+key to a user-readable folder

https://github.com/carmelopellegrino/batchspawner
Securing the back-end communication

20

• cert+key copied on the
wn via spool

transfer_input_files
=notebook.pem,notebook.key,ca.pem,...
encrypt_input_files = *

• Run the notebook in a singularity container

• Isolation of the wn environment from the notebook one

• singularity image built in continuous integration every day

- latest security updates are applied often

• Max job duration set to 72 hours via HTCondor
periodic_remove submit-file command

Securing the wn environment

21

Singularity recipe

22

BootStrap: docker
From: centos:7

%help
Helper image to run jupyter-notebook in HTCondor jobs

%labels
AUTHOR Carmelo Pellegrino <carmelo.pellegrino@cnaf.infn.it>
VERSION 1.0

%post
yum update -y && \
yum upgrade -y && \
yum install -y epel-release && \
yum install -y conda vim nano git subversion htop less && \
yum clean all
source /etc/profile.d/conda.sh
conda create -y --prefix /jupyter python=3.9.7
conda activate /jupyter
conda install -y jupyter jupyterlab
pip install batchspawner==1.1.0

%runscript
source /etc/profile.d/conda.sh
conda activate /jupyter
exec "$@"

• Fail2ban

• HTTPS in config.py

• Firewall rules

• allow SSH only from a restricted set of IPs

• allow back-end connection only from the dedicated worker nodes

• DROP everything else

Securing the Hub

23

cat /etc/fail2ban/filter.d/jupyterhub.conf
[Definition]
failregex = PAM Authentication failed \(.*@<HOST>\)
 404 (GET|HEAD|POST|PUT|DELETE) .* \(@<HOST>\) .*ms
ignoreregex = ''

c.JupyterHub.port = 443
c.JupyterHub.ssl_cert = '/etc/jupyterhub/jupyterhub_cert.pem'
c.JupyterHub.ssl_key = '/etc/jupyterhub/jupyterhub_key.pem'

Additional features

• Each new job receives a custom readme.md file

• basic information for the user

• useful links

• time and date of job termination

Readme file

25

• Editable by each user via web interface before the job is
submitted by the Hub

• Copied at every job start via the spool mechanism

• Visible at ~/.jupyter/jupyter_notebook_config.py

• Useful to load an alternative version of Python from a different
source (e.g.: cvmfs)

User-defined configuration file

26

• E.g.: to make sure Python 3.6 and its libraries are correctly
loaded from CVMFS:

User-defined configuration file

27

• Three levels of data persistency:

- scratch: all data contained in this folder are to be considered
absolutely ephemeral. This means that all files that are left in this
directory will be destroyed at the end of this job. A quota of less than
2TB is shared among all notebooks running on the same worker node

- home: all data contained in the home folder are kept between
subsequent notebook runs via singularity overlayfs files. This storage
is intended for notebook files and installation of small packages via pip
or conda. A hard quota is set to 512MB

- /storage/gpfs_*: these are the usual CNAF disk folders, shared with
user interfaces and worker nodes. Quotas are applied on a per-
experiment basis and persistency is completely demanded to the
experiment

Data and session persistency

28

• What is actually run as executable:

Executable = notebook.sh

29

singularity run \
 --overlay "/storage/gpfs_[...]/$USERNAME.img" \
 --bind scratch/:$HOMEDIR/scratch/:rw \
 --bind README.md:$HOMEDIR/README.md:rw \
 --bind jupyter_notebook_config.py:$HOMEDIR/.jupyter/jupyter_notebook_config.py \
 --bind /cvmfs:/cvmfs:ro \
 --bind /storage:/storage:rw \
 --bind /opt/exp_software:/opt/exp_software:ro \
 --bind ca.pem:/etc/jupyter/ca.pem:ro \
 --bind notebook.pem:/etc/jupyter/notebook.pem:ro \
 --bind notebook.key:/etc/jupyter/notebook.key:ro \
 --env-file env --no-home \
 jn.img "$@" \
 --keyfile=/etc/jupyter/notebook.key \
 --certfile=/etc/jupyter/notebook.pem \

storage
SSL

image

Conclusions

• Jupyter Notebooks are an established technology that support
flexible and solid computing workflows

• JupyterHub@INFN-Tier1 allows notebooks and interactive
access to execute codes on servers identical of those where
batch jobs run

• Notebooks are accounted as batch jobs

• Security is enforced

Conclusions

31

Thank you

Backup

• PAMAuthenticator is the default

- based on the PAM modules installed on the Hub

- authentication can be delegated to any PAM authenticator

- LDAP/Kerberos

- password

- etc...

• OAuthenticator supports GitHub the OAuth provider

https://jupyterhub.readthedocs.io/en/stable/reference/authenticators.html
Authenticators

36

• The central network element is the
configurable-http-proxy

• It is a HTTP proxy written in JavaScript
(nodejs) with REST API for configuration

• Dispatches messages back and forth
the Hub and the Notebooks to the
users' browsers

• Exposes two network ports:

- [::]:443 if SSL else 80 (towards users)

- localhost:8001 (configuration API)

https://jupyterhub.readthedocs.io/en/stable/getting-started/networking-basics.html

Network basics

37

credits: https://jupyterhub.readthedocs.io/en/0.9.1/

• The Hub exposes the [::]:8081 port

• Used by both the Proxy and the
notebooks

• By default, the Hub and the Proxy run
on the same host

https://jupyterhub.readthedocs.io/en/stable/getting-started/networking-basics.html

Network basics

38

credits: https://jupyterhub.readthedocs.io/en/0.9.1/

• The notebooks can run on remote
hosts

• Expose a randomly generated port

• Each notebook tells to the Hub which
port it listens on

• In turn the Hub configures the Proxy
to forward user traffic to the notebook

https://jupyterhub.readthedocs.io/en/stable/getting-started/networking-basics.html

Network basics

39

credits: https://jupyterhub.readthedocs.io/en/0.9.1/

