

中国科学院高能物理研究所

Institute of High Energy Physics, Chinese Academy of Sciences



# Long term Storage Achieves of IHEP

Qiuling Yao On behalf of Storage Group Computing Center, IHEP 2022-03-25



# Outline

- Background
- CASTOR at IHEP
- EOSCTA Evaluation and Usage
- Data Storage Workflow
- Next Steps
- Summary



### Large-scale Scientific Projects at IHEP



- Mass data (~PB/year) from multiple experiments
  - Important data will be preserved permanently

### **Data Storage Management**



ISGC 2022 yaoql@ihep.ac.cn

# Outline

- Background
- CASTOR at IHEP
- EOSCTA Evaluation and Usage
- Data Storage Workflow
- Next Steps
- Summary



### **Tape Archival System - CASTOR**



- In production since 2007
- Version: 1.7
- 3 tape library & 14 server nodes
- Unified namespace, e.g.: /castor/ihep.ac.cn/bes
- Command lines & programming APIs based on RFIO protocol



IBM 3584 for BESIII



IBM 4500 for LHAASO



6/22

### **CASTOR** at IHEP

- Servers for 5 experiments, 2 replicas
  - · BESIII/YBJ/DYB/JUNO/LHAASO
  - Backup for user data
- Customized modifications
  - · Improve compatibility of LTO generations
  - · Database optimization
  - · Tape access acceleration
  - $\cdot$  Enrich access functions for users



|             | BESIII    | DYB       | JUNO   | LHAASO    | YBJ     | BACKUP        | TOTAL         |
|-------------|-----------|-----------|--------|-----------|---------|---------------|---------------|
| FILE NUMBER | 2,831,504 | 5,421,476 | 61,578 | 6,727,408 | 603,010 | 3,500,271,515 | 3,515,916,491 |
| USAGE(TB)   | 3402.505  | 2599.82   | 29.644 | 5415.814  | 525.551 | 265.845       | 12,239.179    |



7/22

### **CASTOR disadvantages**

- CASTOR works well but still has problems
  - The failure rate increased when many files (~50K) waiting in queue for migration
  - · Limited scalability
  - · Only one replica is saved but no alarms
  - No optimized migration mechanism for retrieval requests
  - · Operations are complicated
- CASTOR has been replaced by EOSCTA by many Institutions
- EOS is a main online storage system at IHEP



# Outline

- Background
- CASTOR at IHEP
- EOSCTA Evaluation and Usage
- Data Storage Workflow
- Next Steps
- Summary



### **EOSCTA Evaluation**

- Testbed
  - · EOS: 4.8.34 & 4.8.40, CTA: 3.1-14 & 4.0-1
  - · Management of the drives and tapes by CTA
  - · CTA commands
  - · Data archive and retrieval
- Evaluation results
  - · Hardware architecture is very similar to CASTOR
  - · All function tests passed except Kerberos authentication
  - · The speed of disk and tape is faster than expected





### **EOSCTA Architecture**

#### • Hardware

- 4 EOS storage nodes
  - 12x12TB HDDs
- 5 Tape Servers for BES & LHAASO
- 2 Tape library(share with CASTOR)
  - $\cdot$  20 LTO7 drives
- 1 CTA frontend node and 1 catalogue
  - · 2x1TB SATA SSDs
- · 3 Ceph & QuarkDB nodes
  - · 8x1TB SATA SSDs
- Network connection
  - · 10G/25G Fiber
- Software
  - · Eos:4.8.45 CTA:4.2-1
  - · Ceph:14.2.20 QuarkDB:0.4.3



11/22



### **EOSCTA Stress Test in production**

#### Archiving 100K \* 1GiB Files

- Archiving from 2 nodes with 20 threads
- $\cdot$  ~ 80K files maximum in queue

#### Retrieving these 100K Files

- · Disk replicas cleared beforehand
  - Preparing all files in one request
- All 100K files are archived and retrieved successfully.
- The performance of archival and retrieval is quite good.





### **Current status of EOSCTA**

- Used in production since 2021
- Has been provided to five experiments
  - · HXMT : All long-term storage services switched to EOSCTA
  - · BESIII/LHAASO/DYB/YBJ : Data migration in progress



25th March, 2022

ISGC 2022 yaoql@ihep.ac.cn

### **Upgrade of Long-term Storage**

• Upgrade plan



- $\cdot\,$  All existing data of CASTOR should be migrated to EOSCTA
- $\cdot\,$  Tape upgrade for BESIII/JUNO/YBJ : from LTO4 to LTO7  $\,$
- Long-term storage services should be switched from CASTOR to EOSCTA
- Completed jobs
  - Data migration: ½ DYB & 1/5 YBJ
  - New experiment data of LHAASO & HXMT has been archived to EOSCTA since 2021
  - · BESIII data except DAQ data has saved to EOSCTA



# Outline

- Background
- CASTOR at IHEP
- EOSCTA Evaluation and Usage
- Data Storage Workflow
- Next Steps
- Summary



### **LHAASO Storage Workflow**



- DAQ(Daocheng)  $\rightarrow$  BIG EOS(Beijing)  $\rightarrow$  EOSCTA(Beijing)
- Files are created all time and recreated occasionally.
- Files are archived automatically but retrieved manually.
- Data integrity check will be done after each transmission.



### **BESIII Storage Workflow**



- DAQ  $\rightarrow$  EOSCTA  $\rightarrow$  LUSTRE, all at Beijing.
- Data is immutable after generation and saved immediately.
- Files are saved to EOSCTA based on Xrootd protocol.
- Files will be retrieved to the online filesystem according to Datasets.



### **Long-term Storage Policy**

- One-write-all-read data.
- large files(>100MB) preferred.
- Two replicas for experimental data but only one replica for user/backup data.



### **Next Steps**

- Try other transmission tools like FTS
- Using Kerberos in CTA
- LUSTRE(HSM) + EOSCTA
- Cooperation with other software
  - DTS(Data Transfer System) and DMS(Data Management System)



## **Future planning of other experiments**

- JUNO(Jiangmen Underground Neutrino Observatory)
  - · 3PB/year, 2022~2032
  - $\cdot$  EOS + EOSCTA
  - $\cdot$  Data workflow is similar to LHAASO
  - LTO9, 20 drives, 5K+ slots

### • HEPS(High Energy Photon Source)

- 150PB/year , 2025~
- · LUSTRE + EOSCTA
- Has a dedicate DMS(Data Management System) to handle data flow







### Summary

- All the experiments at IHEP require long-term storage.
- Long-term storage system upgrade from CASTOR to EOSCTA.
- Different data workflow for experiments.
- Two more experiments will be supported by EOSCTA in near future.



# Thank you!

