
Cloud native approach for
Machine Learning as a Service for

High Energy Physics

Luca Giommi1 (luca.giommi@bo.infn.it),
Valentin Kuznetsov2, Daniele Bonacorsi1, Daniele Spiga3, Mattia Paladino1

1 University of Bologna and INFN Bologna, Italy
2 Cornell University, USA

3INFN Perugia, Italy

International Symposium on Grids & Clouds 2022, March 23th

International Symposium on Grids & Clouds 2022, March 23th

High Energy Physics at CERN

1

Ø The European Organization for Nuclear Research (CERN) was born in
1954 and it is based in the northwest suburb of Geneva on the
Franco–Swiss border.

Ø At CERN is located the world’s largest and most powerful particle
accelerator called Large Hadron Collider (LHC).

Ø Inside the accelerator, two high-energy particle beams travel at
close to the speed of light before they are made to collide at four
locations, corresponding to the positions of four particle detectors:
ATLAS, CMS, ALICE and LHCb.

International Symposium on Grids & Clouds 2022, March 23th

Why Machine Learning and ML as a Service?

Ø Machine Learning techniques in the HEP domain are
ubiquitous, successfully used in many areas, and will play a
significant role also in Run3 and High-Luminosity LHC upgrade.

Ø It would be useful a service that ease the usage of ML in HEP
analysis

Ø Existing MLaaS solutions are many: offer many services and
cover different use cases but they are not directly usable in
HEP.

Ø Existing HEP R&D solutions don’t cover the whole ML pipeline
or they are not ‘’aaS’’ solutions or they are diffult to generalize
to other use cases.

Ø We propose a Machine Learning as a Service for HEP
(MLaaS4HEP) solution as a product of R&D activities within
the CMS experiment.

2

Basic idea of the ML as a Service for HEP workflow

International Symposium on Grids & Clouds 2022, March 23th
3

MLaaS4HEP

provide input information

ML model
repository

feedback about the trained ML model

train a ML model

Basic idea of the ML as a Service for HEP workflow

International Symposium on Grids & Clouds 2022, March 23th
4

MLaaS4HEP

provide input information

ML model
repository

select which ML model use

TFaaS

ML model
repository

feedback about the trained ML model

obtain predictions

train a ML model

make predictions on
events

produce all the
necessary plots

International Symposium on Grids & Clouds 2022, March 23th

MLaaS for HEP

MLaaS
inference

MLaaS
train

Cloud/resource providers

Experiment

Data repositories (GRID sites)

MLaaS for HEP aims at providing the following:

Ø natively read HEP data, e.g. be able to read ROOT files of
arbitrary size from local or remote distributed data-sources via
XrootD

Ø use heterogeneous resources both for training and inference,
like local CPU, GPUs, farms, cloud resources, etc.

Ø use different ML libs and frameworks (Keras, TF, PyTorch, etc.)

Ø serve pre-trained HEP models, like a models repository, and
access it easily from any place, any code, any framework.

5

International Symposium on Grids & Clouds 2022, March 23th

MLaaS4HEP R&D

Data streaming and training tools: github.com/vkuznet/MLaaS4HEP
Data inference tool: github.com/vkuznet/TFaaS
Paper published in the CSBS journal: doi.org/10.1007/s41781-021-
00061-3

Ø Data Streaming Layer is responsible for local and remote data
access of HEP ROOT files

Ø Data Training Layer is responsible for feeding HEP ROOT data
into existing ML frameworks

Ø Data Inference Layer (TFaaS) provides access to pre-trained HEP
model for HEP users

6

HDFS

ROOT
files

local
filesystem

Remote
storage

uproot

Data Reader

batches

XRootD

NumPy
array

jagged
branches

jagged
dimensionality

flat
branches

Input Jagged Array data Neural Network
with Dense Jagged Layers

Data Streaming Layer

Data Training Layer

Repository
of NN models

Data Inference Layer

https://github.com/vkuznet/MLaaS4HEP
https://github.com/vkuznet/TFaaS
https://www.springer.com/journal/41781
https://doi.org/10.1007/s41781-021-00061-3

International Symposium on Grids & Clouds 2022, March 23th

Data Streaming and Training Layers

Ø The development of the DIANA-HEP uproot library provides the ability to read ROOT data in Python, access them
as NumPy arrays, and implements XrootD access to read remote files

Ø MLaaS4HEP extends uproot library and provide APIs to feed data read from local and remote distributed ROOT files
into existing ML frameworks

• a Python Generator is created to read ROOT files and deliver them as chunks

• such implementation provides efficient access to large datasets since it does not require loading the
entire dataset into the RAM of the training node

• normalization and pre-processing operations can be applied to the events

• random reads from multiple files are supported, taking the right proportion of data from each file

Ø The non-flat ROOT branches are read and represented by uproot as Jagged/Awkward Arrays

7

convert into numpy
arrays, fix Jagged

Arrays’ dimension and
normalise the values

S
B
B
S
B
B

B

chunk of handled events

S
B

B
B

Train the model for
Nepochs using batches
of data with size Nbatch

Are
all the files
completely

read?

NO

YES

specs.json

Read all the
ROOT files

compute
specs file

load specs
information

1

2

If chunk ci
 is empty

or fully processed,
read Nchunk events

from the file fi

{max:
{key1: max_1,

key_2: max_2,…},
min:

{key_1: min_1, key_2:
min_2,…}, …}

SBBB

read the events

pre-process the events

Take Nchunk
. ni / Ntot

events from the chunk ci

list of files

Did
you go

through all the
files?

YES

NO

i = i + 1i = 0

train the ML model

8

International Symposium on Grids & Clouds 2022, March 23th

./workflow.py --files=files.txt --labels=labels.txt —-model=model.py --params=params.json --preproc=preproc.json

from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout

def model(idim):
"Simple Keras model for testing purposes"
ml_model = Sequential([Dense(128,

activation='relu',input_shape=(idim,)),
Dropout(0.5),
Dense(64, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')])

ml_model.compile(optimizer=keras.optimizers.Adam(lr=1e-3),
loss=keras.losses.BinaryCrossentropy(),
keras.metrics.AUC(name='auc')])

{
"nevts": 3000,
"shuffle": true,
"chunk_size": 1000,
"epochs": 3,
"batch_size": 100,
"identifier": "",
"branch": "boostedAk8/events",
"selected_branches":"",
"exclude_branches": "",
"hist": "pdfs",
"redirector": "root://xrootd.ba.infn.it",
"verbose": 1

}

Keras model (model.py) MLaaS parameters (params.json)

Input ROOT files (files.txt)
PATH/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root
PATH/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

Labels of ROOT files (labels.txt)
1
0

9

Optional

International Symposium on Grids & Clouds 2022, March 23th

Preprocessing operations

10

{
"new_branch": {

"log_partonE": {
"def": "log(partonE)",
"type": "jagged",
"cut_1": ["log_partonE<6.31", "any"],
"cut_2": ["log_partonE>5.85", "all"],
"remove": "False",
"keys_to_remove": ["partonE"]},

"nJets_square": {
"def": "nJets**2",
"type": "flat",
"cut": "1<=nJets_square<=16",
"remove": "False",
"keys_to_remove": ["nJets"]}},

"flat_cut": {
"nLeptons": {
"cut": "0<=nLeptons<=2",
"remove": "False"}},

"jagged_cut": {
"partonPt": {
"cut": ["partonPt>200", "all"],
"remove": "False"}}}

Ø The MLaaS4HEP code has been updated to support
uproot4 and to allow users to perform pre-processing
operations on the input ROOT data.

Ø The migration to the updated version of uproot
allowed to create new branches and to apply cuts,
both on new and on existing branches.

Ø For more details, see the documentation here.

https://uproot.readthedocs.io/en/latest/basic.html
https://github.com/lgiommi/MLaaS4HEP/blob/uproot4_preproc/doc/preproc.md

International Symposium on Grids & Clouds 2022, March 23th

Running MLaaS4HEP DEM
O

https://www.dropbox.com/s/95rzem8ofhgy8ei/DEMO_CUT.mp4?dl=0

11

https://www.dropbox.com/s/95rzem8ofhgy8ei/DEMO_CUT.mp4?dl=0

International Symposium on Grids & Clouds 2022, March 23th

Data Inference Layer

Ø The Data Inference Layer is implemented as TensorFlow as a Service (TFaaS), written in the Go programming language

• The Go programming language natively supports concurrency and it is very well integrated with the TF library

Ø TFaaS is a generic (experiment and HEP agnostic) inference framework to serve pre-trained TF 1.X and TF 2.X models
via HTTP protocol

Ø Both Python and C++ clients were developed on top of the REST APIs (end-points) and other clients can be developed
thanks to HTTP protocol used by the TFaaS Go RESTful implementation

• C++ client library talks to TFaaS using ProtoBuffer data-format, all others use JSON (see examples)

Ø TFaaS allows a rapid development or continuous training of TF models and their validation: clients can test multiple TF
models at the same time

Ø A TFaaS server hosted by CERN is online: https://cms-tfaas.cern.ch/
• Deployment: k8s using one node with 4 cores and 8GB of RAM

12

https://github.com/vkuznet/TFaaS
https://github.com/vkuznet/TFaaS/tree/master/src/cpp
https://github.com/vkuznet/tfaas
https://cms-tfaas.cern.ch/

Towards MLaaS4HEP cloudification

13

Ø Now our goal is to create a cloud service that could use cloud resources and could be integrated into the
INFN Cloud.

Ø The first step is to build a MLaaS4HEP server
• The user should be able to submit a MLaaS4HEP workflow request to the server using an HTTP call

International Symposium on Grids & Clouds 2022, March 23th

Current MLaaS4HEP server

14

Ø We built a MLaaS4HEP server with some basic APIs using the (Python-based) Flask framework:
https://github.com/lgiommi/MLaaS4HEP_server

Ø Current APIs: submit, status_docker, logs
• curl -H "Content-Type: application/json" -d @input.json http://localhost:8080/submit
• curl http://localhost:8080/status_docker?process_name=luca_1
• curl 'http://localhost:8080/logs?process_name=luca_1&log_file=logs.txt’

{
"name": "luca",
"device": "cpu",
"memory": "500m",
"cpus": 0.1,
"files": "files_test.txt",
"labels": "labels_test.txt",
"model": "keras_model.py",
"params": "params_test.json"
}

{
"process_name": "luca_1",
"job_id": 20547
}

Example of input.json file and
output of a submit API

https://github.com/lgiommi/MLaaS4HEP_server

International Symposium on Grids & Clouds 2022, March 23th

Manage user authentication with a proxy server

15

Ø One of the requirements for the MLaaS4HEP service to be integrated into the INFN Cloud is to have an
authentication system to manage the user access.

Ø Successfully integrated dmwm/auth-proxy-server and oauth2-proxy locally
• The first one is an R&D product in CMS while the second one is a generic tool

Ø Let’s focus on the case of oauth2-proxy and on the steps needed to make a proxy server works
• More details here

https://github.com/dmwm/auth-proxy-server
https://oauth2-proxy.github.io/oauth2-proxy/
https://github.com/lgiommi/MLaaS4HEP_server/blob/master/doc/OAuth2-Proxy_usage.md

International Symposium on Grids & Clouds 2022, March 23th

Integration of OAuth2 Proxy server

16

1) Register the client with the authorization server https://cms-auth.web.cern.ch/

https://cms-auth.web.cern.ch/

International Symposium on Grids & Clouds 2022, March 23th

Integration of OAuth2 Proxy server

17

1) Register the client with the authorization server https://cms-auth.web.cern.ch/
2) Obtain a token for the client using oidc-agent

oidc-agent
eval `oidc-agent`
oidc-gen -w device mlaas
TOKEN = $(oidc-token mlaas --aud=CLIENT_ID)

https://cms-auth.web.cern.ch/

International Symposium on Grids & Clouds 2022, March 23th

Integration of OAuth2 Proxy server

18

1) Register the client with the authorization server https://cms-auth.web.cern.ch/
2) Obtain a token for the client using oidc-agent
3) Prepare a configuration file for the oauth2-proxy server (also for the case of TLS connections)

provider = "oidc"
redirect_url = "http://localhost:4180/oauth2/callback"
oidc_issuer_url = "https://cms-auth.web.cern.ch/"
upstreams = ["http://0.0.0.0:8080"]
email_domains = ["*"]
client_id = "CLIENT_ID"
client_secret = "CLIENT_SECRET"
cookie_secret = "COOKIE_SECRET"
cookie_secure = false
skip_provider_button = true
ssl_insecure_skip_verify = true

provider="oidc"
https_address = ":4433"
redirect_url = "https://localhost:4433/oauth2/callback"
oidc_issuer_url = "https://cms-auth.web.cern.ch/"
upstreams = ["http://127.0.0.1:8080/"]
email_domains = ["*"]
client_id = "CLIENT_ID"
client_secret = "CLIENT_SECRET"
cookie_secret = "COOKIE_SECRET"
tls_cert_file = "./localhost.crt"
tls_key_file = "./localhost.key"

https://cms-auth.web.cern.ch/

International Symposium on Grids & Clouds 2022, March 23th

Integration of OAuth2 Proxy server

19

1) Register the client with the authorization server https://cms-auth.web.cern.ch/
2) Obtain a token for the client using oidc-agent
3) Prepare a configuration file for the oauth2-proxy server (also for the case of TLS connections)
4) Run the oauth2-proxy server using the prebuilt binary or the prebuilt docker image

oauth2-proxy --config ./example_config.cfg --skip-jwt-bearer-tokens=true

docker run -v /home/giommi/luca:/etc --net=host quay.io/oauth2-proxy/oauth2-proxy:latest
--config=/etc/example_config.cfg --skip-jwt-bearer-tokens=true

https://cms-auth.web.cern.ch/

International Symposium on Grids & Clouds 2022, March 23th

Integration of OAuth2 Proxy server

20

1) Register the client with the authorization server https://cms-auth.web.cern.ch/
2) Obtain a token for the client using oidc-agent
3) Prepare a configuration file for the oauth2-proxy server (also for the case of TLS connections)
4) Run the oauth2-proxy server using the prebuilt binary or the prebuilt docker image
5) Call MLaaS4HEP APIs passing the TOKEN and using the port where the proxy is running

curl -L -k -H 'Content-Type: application/json' -H "Authorization: Bearer ${TOKEN}" -d @input.json
http://localhost:4180/submit

https://cms-auth.web.cern.ch/

International Symposium on Grids & Clouds 2022, March 23th

Preliminary final architecture

21

Ø In our research group we are still discussing about the final architecture of the MLaaS4HEP service, and we identified
some needed key elements.
• An OAuth2 Proxy server to manage user authentication
• An XRootD Proxy server to store X.509 certificates needed for the access of remote ROOT files and used as cache
• Divide the MLaaS4HEP workflow into two processes, one for reading + handling data and one for training. These

two processes need a shared SSD storage for handled data
• Database for trained ML models to share between MLaaS4HEP and TFaaS servers

Preliminary final architecture

22

International Symposium on Grids & Clouds 2022, March 23th

Conclusions

23

Ø R&D project about a MLaaS4HEP solution
• A CMS physics use case allowed us to validate the framework and test its performance

Ø To integrate MLaaS4HEP in the INFN Cloud we started working on its cloudification
• Currently we created a MLaaS4HEP server and we integrated an OAuth2 Proxy server for user

authentication

Ø The project is still ongoing and we planned to add other elements
• SSD storage, XRootD Proxy server

Ø To deliver an efficient service to the physicists’ community we need to guarantee its scalability and to
provide a scheduler for the multiple requests
• For these reasons we planned to use Kubernetes

Thanks for the attention

International Symposium on Grids & Clouds 2022, March 23th 24

Backup slides

International Symposium on Grids & Clouds 2022, March 23th 25

International Symposium on Grids & Clouds 2022, March 23th

Issues with using existing solutions

Ø Existing MLaaS services can’t read HEP data directly in the ROOT data-format: most of the cases ML deal with
either CSV or NumPy arrays representing tabular data

• We don’t use ROOT data directly in the ML framework, we need a conversion step

• Pre-processing operations may be more complex than offered by service providers

Ø R&D for specialized solutions to speed-up inference on FPGAs, e.g. HLS4ML

• These solutions are designed for optimization of the inference phase rather than targeting the whole ML
pipeline from reading data, to training and serving predictions

Ø Custom solutions adopted in specific CMS analysis (e.g DOI: 10.1088/2632-2153/ab9023) cannot easily
generalized and do not represent ‘’as a Service’’ solutions

Ø Recent solution with Spark platform for data processing and ML training (DOI: 10.1007/s41781-020-00040-0).
Here data are read from the CERN EOS storage system, not allowing access to data stored in WLCG sites

26

https://fastmachinelearning.org/hls4ml/
https://iopscience.iop.org/article/10.1088/2632-2153/ab9023
https://link.springer.com/article/10.1007%2Fs41781-020-00040-0

International Symposium on Grids & Clouds 2022, March 23th

Jagged Arrays

Ø Each event is a composition of flat and Jagged Arrays
• Such data representation is not directly suitable

for ML (dynamic dimension of Jagged Arrays
across events)

Ø To feed these data into ML we need to resolve how to
treat Jagged Arrays. We opted to flatten Jagged Arrays
into fixed-size array with padding values through a two-
step procedure:
• know the dimensionality of every Jagged Array

attribute;
• update the dimension of jagged branches using

padding values, which should be assigned as NANs
since all other numerical values can represent
attribute spectrum.

Ø Keep the mask array with padding values location

NumPy
array

jagged
branches

jagged
dimensionality

flat
branches

jagged
branchpadding

jagged branches

rest of
jagged branches

with padding
flat branches

Transform jagged NumPy
array into flat one

27

./workflow.py --files=files.txt --labels=labels.txt —model=model.py --params=params.json
DataGenerator: <MLaaS4HEP.generator.RootDataGenerator object at 0x7f0cb58d7fd0> [29/Jun/2020:17:53:14] 1593445994.0
model parameters: {"nevts": 30000, "shuffle": true, "chunk_size": 10000, "epochs": 2, "batch_size": 500, "identifier": ["runNo", "evtNo", "lumi"],
"branch": "boostedAk8/events", "selected_branches": "", "exclude_branches": "", "hist": "pdfs", "redirector": "root://xrootd.ba.infn.it", "verbose": 1}

Reading root://xrootd.ba.infn.it//PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root
10000 entries, 77 branches, 9.52220344543457 MB, 1.0169336795806885 sec, 9.36364252323795 MB/sec, 9.833482950553169 kHz
10000 entries, 77 branches, 9.533915519714355 MB, 1.2977769374847412 sec, 7.346343770133804 MB/sec, 7.705484441248654 kHz
10000 entries, 77 branches, 9.538667678833008 MB, 1.4104814529418945 sec, 6.7627033726234735 MB/sec, 7.089777734505208 kHz
--- first pass: 948348 events, (22-flat, 52-jagged) branches, 328 attrs
<MLaaS4HEP.reader.RootDataReader object at 0x7f840dbf4d50> init is complete in 4.852992534637451 sec

Reading root://xrootd.ba.infn.it//PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root
10000 entries, 77 branches, 8.875920295715332 MB, 0.9596493244171143 sec, 9.249128895189415 MB/sec, 10.42047313071777 kHz
10000 entries, 77 branches, 8.868906021118164 MB, 1.2938923835754395 sec, 6.854438694979048 MB/sec, 7.728618026459661 kHz
10000 entries, 77 branches, 8.869449615478516 MB, 1.1267895698547363 sec, 7.871433897477369 MB/sec, 8.874771534572496 kHz
--- first pass: 1003980 events, (22-flat, 52-jagged) branches, 312 attrs
<MLaaS4HEP.reader.RootDataReader object at 0x7f8410e15f90> init is complete in 4.535124778747559 sec

write global-specs.json
load specs from global-specs.json for root://xrootd.ba.infn.it//$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root
load specs from global-specs.json for root://xrootd.ba.infn.it//$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root
init RootDataGenerator in 11.186564683914185 sec

MLaaS parameters Read remote root files

label 1, file <flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root>, going to read 4858 events
read chunk [0:4857] from /$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root
10000 entries, 77 branches, 9.52220344543457 MB, 1.3816642761230469 sec, 6.891835889507034 MB/sec, 7.237648228164387 kHz
total read 4858 evts from /$PATH_FILES/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root

label 0, file <flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root>, going to read 5142 events
read chunk [4858:9999] from /$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root
10000 entries, 77 branches, 8.875920295715332 MB, 1.7170112133026123 sec, 5.169401473297779 MB/sec, 5.8240737873606205 kHz
total read 5142 evts from /$PATH_FILES/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

Create the chunk

Write and load the specs

28International Symposium on Grids & Clouds 2022, March 23th

International Symposium on Grids & Clouds 2022, March 23th

Real case scenario:
𝑡 ̅𝑡𝐻(𝑏𝑏) analysis in the boosted, all-hadronic final states

Ø We chose a signal vs background discrimination problem in a
𝑡 ̅𝑡𝐻 analysis as a real physics use-case. This allowed us to:

1. validate MLaaS results from the physics point of view
2. test performances of MLaaS4HEP framework

Ø In the validation phase we used:
• 9 ROOT files with a total of 350k events and a total size of

~ 28 MB
• a simple Neural Network in Keras

Ø we obtained an AUC score comparable with the BDT-based
analysis, performed within the TMVA framework by a subgroup
of the CMS HIG PAG

29

International Symposium on Grids & Clouds 2022, March 23th

MLaaS4HEP validation

Ø Validate the MLaaS4HEP approach by comparing it with
alternative methods on the reference use-case
• We used a simple NN with Keras in all methods

Ø Validation successful: physics results are not impacted

Ø The AUC score is also comparable with the BDT-based
analysis, performed within the TMVA framework by a
subgroup of the CMS HIG PAG

AUC score

30

International Symposium on Grids & Clouds 2022, March 23th

MLaaS4HEP performance

Ø For this phase we used all available ROOT files without any physics cut. This gave us a dataset with 28.5M
events with 74 branches (22 flat and 52 Jagged), and a total size of about 10.1 GB.

Ø We performed all the tests running MLaaS framework on
• macOS, 2.2 GHz Intel Core i7 dual-core, 8 GB of RAM
• CentOS 7 Linux, 4 VCPU Intel Core Processor Haswell 2.4 GHz, 7.3 GB of RAM CERN Virtual Machine

Ø The average available bandwidth was approximately 129 Mbit/s and 639 Mbit/s using macOS and CERN VM,
respectively.

Ø The ROOT files are read from local file-systems (SSD storages) and remotely from the Grid sites. In particular,
we read files remotely from three different data-centers located at
• Bologna (BO)
• Pisa (PI)
• Bari (BA)

31

International Symposium on Grids & Clouds 2022, March 23th

MLaaS4HEP performance results

Ø Based on the resource we used and if the ROOT files were local or remote, we obtained:
v specs computing phase (chunk size = 100k events)

• Event throughput: 8.4k – 13.7k evts/s
• Total time using all the 28.5M events: 35 – 57 min

v chunks creation in the training phase (chunk size = 100k events)
• Event throughput: 1.1k – 1.2k evts/s
• Total time using all the 28.5M events: 6.5 – 7.5 hrs

Ø The time to train the ML model is not included in the performance. It is independent from the MLaaS4HEP
framework but depends on the underlying ML framework, the complexity of the used ML model, and the
available hardware resources.

Ø We estimate that projecting these results for datasets at the TB scale and using the same hardware resources, the
specs computing phase will take O(100) hours and the training phase will take O(1k) hours (plus the time required
to train the ML model).
• Further optimization of the MLaaS4HEP pipeline will be required to process TB or PB scale datasets and it

may involve parallelization of I/O, distributed ML training, etc.

32

International Symposium on Grids & Clouds 2022, March 23th

How to use TFaaS

33

https://www.dropbox.com/s/f5907j23ba4jjms/Tfaas_video.mp4?dl=0

DEM
O

https://www.dropbox.com/s/f5907j23ba4jjms/Tfaas_video.mp4?dl=0

International Symposium on Grids & Clouds 2022, March 23th

TFaaS performance

Ø We did TFaaS benchmarks on CentOS 7 Linux, 16 cores, 30 GB of RAM in two modes:
• using 1k calls with 100 concurrent clients,
• using 5k calls with 200 concurrent clients.

Ø We tested both JSON and ProtoBuffer data formats while sending and fetching the data to/from the TFaaS server.

Ø In both cases, we achieved a throughput of 500 req/sec. These numbers were obtained by serving a mid-size pre-
trained NN model with 27 features and 1024x1024 hidden layers used in the physics analysis discussed. Similar
performance was found for image classification datasets (MNIST).

Ø The actual performance of TFaaS will depend on the complexity of served ML model and available hardware
resources.

Ø Even though a single TFaaS server may not be as efficient as an integrated solution, it can be horizontally scaled,
e.g. using Kubernetes or other cluster orchestrated solutions, and may provide the desired throughput for
concurrent clients.

34

International Symposium on Grids & Clouds 2022, March 23th

Towards MLaaS4HEP cloudification

Ø We created a service performing the ML pipeline using local and remote ROOT files
• The performance strictly depends on the available hardware resources

Ø How to improve the performance?
• Adopt new solutions in the code
• Invest in better and more expensive on-premise resources
• Move to the cloud

Ø The operation of cloudification has two benefits:
• opens us to potentially more performing resources
• provides a real ‘’as a Service’’ solution for the user

Ø We started to work for a MLaaS4HEP cloudification using DODAS
• implements services composition model based on templates

MLaaS4HEP

35

MLaaS4HEP cloudification with DODAS

Creation of a docker
image able to run the

workflow.py script

Create an Ansible playbook to
automatize the configuration

and deployment of the
container with dependencies

Creation of a Tosca template to
define the resource requirements
and the input parameters for the
creation of the docker container

Convert the Ansible
playbook into an

Ansible role

dodas create lgiommi-template.yml
dodas login <infID> <vmID>

Create the deployment
from command line

Run workflow.py
interactively or
with jupyterhub

International Symposium on Grids & Clouds 2022, March 23th 36

https://github.com/lgiommi/mlaas_cloud/blob/master/Dockerfile
https://github.com/lgiommi/mlaas_cloud/blob/master/lgiommi-template-scenario1.yml
https://github.com/lgiommi/mlaas_cloud/tree/master/mlaas_role

MLaaS4HEP using Jupyterhub

Ø We provide a SaaS solution for a sharable jupyter notebook
Ø Token-based access to the jupyterhub, with the support for a customizable environment

Ø Integrate cloud storage for managing the required files (ROOT files, ML model, etc.)

felixfelicislp/mlaas_cloud:mlaas_jupyterhub

. ./shared/setup_local
(base) # cd /workarea/shared/folder_test
(base) # ../../workarea/MLaaS4HEP/src/python/MLaaS4HEP/workflow.py --files=files_test.txt --labels=labels_test.txt --
model=keras_model.py --params=params_test.json
model parameters: {"nevts": -1, "shuffle": true, "chunk_size": 10000, "epochs": 5, "batch_size": 100, "identifier": ["runNo", "evtNo",
"lumi"], "branch": "events", "selected_branches": "", "exclude_branches": "", "hist": "pdfs", "redirector": "root://gridftp-storm-
t3.cr.cnaf.infn.it:1095", "verbose": 1}
Reading ttH_signal.root
10000 entries, 29 branches, 1.10626220703125 MB, 0.034181833267211914 sec, 32.364039645948566 MB/sec, 292.5530623775014 kHz
10000 entries, 29 branches, 1.10626220703125 MB, 0.022344589233398438 sec, 49.50917626973965 MB/sec, 447.53563807084936 kHz

International Symposium on Grids & Clouds 2022, March 23th 37

