

中國科學院為能物現研究所 Institute of High Energy Physics, Chinese Academy of Sciences

Network Bandwidth Guarantee of Data Transmission in High Energy Physics Experiments

LIU Yi liuyi98@ihep.ac.cn Computing Center , IHEP

Outline

- Background & Introduction
- Purpose
- Prediction module
- Future plan
- Summary

Background—Network requirements

6

ISGC 2022

Features

- High energy physics experiments are region-crossing
 - Experimental devices and data centers are built separately.
 - Remote data transmission is required.

Features

- Network links between experiments and data centers are shared
 - Data from different experiments is transmitted through the same link.
 - Some experimental data requires the link to guarantee its transmission.

Instruction

Problems to be solved

- Bandwidth allocation is static for different assignments.
- The allocation of bandwidth is modified manually.
- The guarantee of assignments transmission depends on experience.

Problems to be solved

- Experiments in Dongguan and Jiangmen are sharing the only channel.
- Resources (bandwidth...) should be allocated to assignments in a planned way
 - Automatic :
 - The system allocates the resources automatically according to the received information ,including file size, file numbers...
 - Dynamic :
 - The allocation of resources is dynamically adjusted with the progress of transmission.
 China Spallation Neutron Center
 - Conditional :
 - The allocation should be satisfied the priority requirements of the assignments.

Purpose

Prediction module

- Prediction module provides suggestions for subsequent system.
- The prediction results can ensure data transmit successfully.

Purpose

Brief summary

- Prediction module:
 - receives information from transmission module
 - delivers prediction to dispatching module
 - aims to guarantee data transmission

Prediction module

Methods

• BP neural network

- Non-linear mapping, generalization ability, self-adaption
- The structure of the BP neural network looks like:

Prediction module

Input include priority

The priority of a certain assignment should be one of the parameters.

- Input : the number of input nodes $N_{in} = 6$
- Output : the number of output node $N_{out} = 1$

Future plan

• Discuss and improve the prediction module

• Meet the requirements of IHEPCC

Summary

- High energy physics experiment has two features: remote construction and sharing link.
- A method based on BP neural network is to used to estimate bandwidth need.
- The prediction results can be the guidance and suggestions for dispatching the resources.

Thank you!

