
Exploiting cloud
resources with DIRAC

A.Tsaregorodtsev, A.Lytovchenko
CPPM-IN2P3-CNRS, France,

D.Bauer, S.Fayer, Imperial College, UK,
23d March 2022 ISGC’22, Taipei

Plan

2

} DIRAC Project
} Services: EGI, GridPP
} DIRAC WMS Architecture
} Managing Cloud resources

} Architecture
} Managing VM life cycle

} Security aspects
} Bootstrapping
} Monitoring

} Managing multi-core VMs

} Cloud resources usage examples
} Conclusion

Interware

● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources
● A framework shared by multiple experiments, both

inside HEP, astronomy, and life sciences

EGI Workload
Manager Service

4

} Partners
} Operated by EGI
} Hosted by CC/IN2P3, Lyon
} DIRAC@IN2P3 Project providing

software, consultancy
} Supported via the EGI-ACE grant
} dirac.egi.eu

} ~40 Virtual Organizations
} enmr.eu
} eiscat.se
} biomed
} Opencoast
} …

} Usage
} > 3 million jobs processed since the beginning of the year

DIRAC4EGI activity snapshot

DIRAC Service

5

} GridPP is a collaboration
of 19 UK universities
tasked with providing
grid services for the
WLCG and related
communities.

} GridPP has been providing
a DIRAC service for VOs
with UK participation since 2015

} 16 VOs registered
} typically ~8 active at any one time.

} DIRAC is used for workload management (grid & cloud) and
data management.

Job scheduling

6

} Pilot jobs are submitted to computing
resources by specialized Pilot
Directors

} Pilots retrieve user jobs from the
central Task Queue and steer their
execution on the worker nodes
including final data uploading

} Pilot based WMS advantages:
} increases efficiency of the user job

execution
} allows to apply efficiently community

policies at the Task Queue level
} allows to integrate heterogeneous

computing resources

Clouds

7

} VM scheduler
} Dynamic VM spawning

taking Task Queue state into
account

} Discarding VMs
automatically when no more
needed

} The DIRAC VM scheduler
by means of dedicated
Cloud Directors is
interfaced to
} Private:

} OpenStack, OpenNebula
} Amazon EC2
} …

VM life cycle: Creation

8

} Cloud Director logic
} VM creation when there are waiting user jobs in the Task Queue

} VM creation with a predefined profile for a givenVO
} OS image, flavor/size
} General and VO specific packages to be installed:

CVMFS, gcc, perl, etc

} AVM created for oneVO can not be reused for jobs of users from
anotherVO
} More safety although less efficiency

} VMs are registered in the central database to allow monitoring and
controls

VM life cycle: API

9

} VM Creation API
} Abstract Cloud Endpoint class
} Implementations:

} Openstack REST interface
} OpenNebula REST interface
} Amazon boto3 Python binding
} Apache libcloudAPI

¨ libcloud drivers exist for multiple popular clouds

} VM Bootstrapping
} cloud-init yaml configuration file (user data)

VM life cycle: Security(1)

10

} Cloud Endpoint secure access methods
} Login/password
} VOMS X509 certificates
} OAuth2 tokens

} DIRAC ProxyManager service to maintain long living proxies
} Similar to MyProxy service
} Provides certificate proxies for communication with cloud endpoints

} DIRAC TokenManager service to provide access tokens
} Keeping long living user refresh tokens used to generate access tokens

for communications with Cloud Endpoints

} One user credentials per VO

VM life cycle: Security(2)

11

} Using a service certificate deployed in the VMs for
communication with central DIRAC services
} Deployed via a secure encrypted connection as part of the VM

bootstrapping process

} Only outbound connections VM -> Central Service
are allowed
} Inbound SSH connection only for debugging problems in

specially createdVMs

VM life cycle: Monitoring

12

} VirtualMachineMonitorAgent is launched during the
bootstrapping process
} Monitors the VM status and reports to the central
VirtualMachineManager service
} VM heart beats, load, executed work, etc

} Detects conditions for stopping the VM
} No running jobs for a predefined period
} No CPU activity for a predefined period
} Other strategies are possible

} Gets instructions from the central service
} VM stopping

¨ Gracefull after finishing current tasks
¨ Forcefull

VM Pilots

13

} A standard DIRAC pilot is launched in the end of
the bootstraping process
} Installing and configuring DIRAC software
} Checking the environment
} Requesting and steering execution of the user payloads

} User jobs are executed with user credentials received together with
the payloads

Fat multi-core nodes

14

} Pilots exploit multi-core VMs using PoolCE “inner”
Computing Element
} On-WN batch system
} Flexible strategy with prioritized job requests to the Matcher, e.g.:

} First, ask for jobs requiring WholeNode tag
} If none, ask for jobs requesting as many cores as available
} If none, ask for jobs with MultiProcessor requirement
} If none, ask for single-core jobs

} The goal is to fill the nodes with payloads fully exploiting there
multi-core capacity

Matcher

VM life cycle: Pilots

15

} User payloads execution options (configurable)
} Execution by a pilot user process

} InProcessCE « inner » Computing Element
} No barriers between parallel user jobs
} No barriers between the user job and the pilot

} Execution in separate processes with different user unix
identities
} SudoCE « inner » Computing Element
} Parallel user jobs are isolated from each other (a la glexec)

} Execution in separate Singularity containers

Singularity for Cloud Nodes

} SingularityCE allows running predefined containers as
wrappers around user payloads
} Can also be used in grid environments for a consistent environment

across all platforms

} For VMDIRAC this:
} Isolates payload from the pilot for security
} Allows a more generic cloud image to be used

} “Standard” CernVM WN container can be used for payload

} SingularityCE can be nested inside PoolCE so stacked
jobs are also isolated from each other

} Nesting can also be used to allow a user to run their
own container image.

Using clouds in
the EGI service

17

} Using cloud resources for grid-like and special
workflows
} Mixing conventional grid and cloud resources in the same workflow

} WeNMR structural biology application portal
} ~1% of the total resources

} Using cloud as resources with special features (biomed, climatology
applications)
} High memory nodes
} Multi-core nodes
} GPU nodes

} Accessing cloud endpoints through the Openstack
REST interface and cloud-init for instance
contextualisation

Using clouds in
the GridPP service

18

Motivation for Cloud usage:
● Used by the LZ experiment (dark matter) to access

high memory nodes for calibration workflows.
○ LZ uses DIRAC for all their processing, hence cloud

integration was essential.
○ 57% of LZ job ran on cloud resources.

● Cloud is shared between cloud and grid style
workflows.

● Backfill on non-GridPP resources (LSST).
● GridPP DIRAC uses the libcloud backend and

cloud-init for instance contextualisation.

Conclusions

19

} Cloud resources are provided by several distributed
computing infrastructures in increasingly high volumes

} DIRAC is providing a framework for integration of those
resources together with grid systems and computing clusters

} Cloud resources can be used as additional capacity for
workflows already exploiting grids and clusters

} Clouds allow to provide resources with specific features for
particular applications with requirements like high memory,
GPU and others still maintaining the same DIRAC job
submission and management interfaces

Acknowledgements

20

Ø This work is co-funded by the EOSC-hub
project (Horizon 2020) under Grant number
777536

Ø EGI-ACE receives funding from the European
Union's Horizon 2020 research and Innovation
programme under grant agreement no.
101017567

http://diracgrid.org

