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Interware

● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources
● A framework shared by multiple experiments, both 

inside HEP, astronomy, and life sciences



EGI Workload
Manager Service
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} Partners
} Operated by EGI
} Hosted by CC/IN2P3, Lyon
} DIRAC@IN2P3 Project providing 

software, consultancy
} Supported via the EGI-ACE grant
} dirac.egi.eu

} ~40 Virtual Organizations
} enmr.eu
} eiscat.se
} biomed
} Opencoast
} …

} Usage
} > 3 million jobs processed since the beginning of the year

DIRAC4EGI activity snapshot



DIRAC Service
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} GridPP is a collaboration 
of 19 UK universities 
tasked with  providing 
grid services for the 
WLCG and related 
communities.

} GridPP has been providing 
a DIRAC service for VOs 
with UK participation since 2015

} 16 VOs registered
} typically ~8  active at any one time.

} DIRAC is used for workload management (grid & cloud) and 
data management. 



Job scheduling
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} Pilot jobs are submitted to computing
resources by specialized Pilot 
Directors

} Pilots retrieve user jobs from the 
central Task Queue and steer their 
execution on the worker nodes 
including final data  uploading

} Pilot based WMS advantages:
} increases efficiency of the user job 

execution
} allows to apply efficiently community 

policies at the Task Queue level
} allows to integrate heterogeneous 

computing resources



Clouds

7

} VM scheduler 
} Dynamic VM spawning 

taking Task Queue state into 
account

} Discarding VMs 
automatically when no more 
needed

} The DIRAC VM scheduler 
by means of dedicated 
Cloud Directors is 
interfaced to 
} Private:

} OpenStack, OpenNebula
} Amazon EC2
} …



VM life cycle: Creation
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} Cloud Director logic
} VM creation when there are waiting user jobs in the Task Queue

} VM creation with a predefined profile for a givenVO 
} OS image, flavor/size
} General and VO specific packages to be installed:

CVMFS, gcc, perl, etc

} AVM created for oneVO can not be reused for jobs of users from
anotherVO
} More safety although less efficiency

} VMs are registered in the central database to allow monitoring and
controls



VM life cycle: API
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} VM Creation API
} Abstract Cloud Endpoint class
} Implementations: 

} Openstack REST interface
} OpenNebula REST interface
} Amazon boto3 Python binding
} Apache libcloudAPI  

¨ libcloud drivers exist for multiple popular clouds  

} VM Bootstrapping
} cloud-init yaml configuration file (user data)



VM life cycle: Security(1)
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} Cloud Endpoint secure access methods
} Login/password
} VOMS X509 certificates
} OAuth2 tokens

} DIRAC ProxyManager service to maintain long living proxies
} Similar to MyProxy service
} Provides certificate proxies for communication with cloud endpoints

} DIRAC TokenManager service to provide access tokens
} Keeping long living user refresh tokens used to generate access tokens

for communications with Cloud Endpoints

} One user credentials per VO



VM life cycle: Security(2)
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} Using a service certificate deployed in the VMs for 
communication with central DIRAC services
} Deployed via a secure encrypted connection as part of the VM 

bootstrapping process

} Only outbound connections VM -> Central Service 
are allowed
} Inbound SSH connection only for debugging problems in 

specially createdVMs



VM life cycle: Monitoring
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} VirtualMachineMonitorAgent is launched during the 
bootstrapping process
} Monitors the VM status and reports to the central 
VirtualMachineManager service
} VM heart beats, load, executed work, etc

} Detects conditions for stopping the VM
} No running jobs for a predefined period
} No CPU activity for a predefined period
} Other strategies are possible

} Gets instructions from the central service 
} VM stopping

¨ Gracefull after finishing current tasks
¨ Forcefull



VM Pilots
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} A standard DIRAC pilot is launched in the end of 
the bootstraping process
} Installing and configuring DIRAC software
} Checking the environment
} Requesting and steering execution of the user payloads

} User jobs are executed with user credentials received together with
the payloads



Fat multi-core nodes
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} Pilots exploit multi-core VMs using PoolCE “inner” 
Computing Element
} On-WN batch system
} Flexible strategy with prioritized job requests to the Matcher, e.g.:

} First, ask for jobs requiring WholeNode tag
} If none, ask for jobs requesting as many cores as available
} If none, ask for jobs with MultiProcessor requirement
} If none, ask for single-core jobs

} The goal is to fill the nodes with payloads fully exploiting there
multi-core capacity

Matcher



VM life cycle: Pilots
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} User payloads execution options (configurable)
} Execution by a pilot user process

} InProcessCE « inner » Computing Element
} No barriers between parallel user jobs 
} No barriers between the user job and the pilot

} Execution in separate processes with different user unix
identities
} SudoCE « inner » Computing Element
} Parallel user jobs are isolated from each other (a la glexec)

} Execution in separate Singularity containers



Singularity for Cloud Nodes

} SingularityCE allows running predefined containers as 
wrappers around user payloads
} Can also be used in grid environments for a consistent environment 

across all platforms

} For VMDIRAC this:
} Isolates payload from the pilot for security
} Allows a more generic cloud image to be used

} “Standard” CernVM WN container can be used for payload

} SingularityCE can be nested inside PoolCE so stacked 
jobs are also isolated from each other

} Nesting can also be used to allow a user to run their 
own container image.



Using clouds in 
the EGI service
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} Using cloud resources for grid-like and special
workflows
} Mixing conventional grid and cloud resources in the same workflow

} WeNMR structural biology application portal
} ~1% of the total resources

} Using cloud as resources with special features (biomed, climatology
applications)
} High memory nodes
} Multi-core nodes
} GPU nodes

} Accessing cloud endpoints through the Openstack
REST interface and cloud-init for instance 
contextualisation



Using clouds in 
the GridPP service
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Motivation for Cloud usage: 
● Used by the LZ experiment (dark matter) to access 

high memory nodes for calibration workflows.
○ LZ uses DIRAC for all their processing, hence cloud 

integration was essential. 
○ 57% of LZ job ran on cloud resources.

● Cloud is shared between cloud and grid style 
workflows. 

● Backfill on non-GridPP resources (LSST).
● GridPP DIRAC uses the libcloud backend and 

cloud-init for instance contextualisation.



Conclusions
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} Cloud resources are provided by several distributed 
computing infrastructures in increasingly high volumes 

} DIRAC is providing a framework for integration of those
resources together with grid systems and computing clusters

} Cloud resources can be used as additional capacity for
workflows already exploiting grids and clusters

} Clouds allow to provide resources with specific features for 
particular applications with requirements like high memory, 
GPU and others still maintaining the same DIRAC job 
submission and management interfaces
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