Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance

Dr. Marco Lorusso

University of Bologna - Department of Physics and Astronomy

National Institute for Nuclear Physics - Bologna Division

24th March 2022

Dr. Marco Lorusso

Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance

Field Programmable Gate Array

Field Programmable

Gate Arrays (FPGAs) \rightarrow Middle ground between ASICs and multipurpose CPUs:

Programmables

to perform a wide range of tasks;

Low-level/Near-metal implementation of algorithms → low latency;

Blend the benefits of both hardware and software;

 Internal layout made up of *logic* blocks (LUTs, flipflops, Digital Signal Processor slices), embedded in a general routing structure.

FPGA diagram

Dr. Marco Lorusso

Implementing a Neural Network on an FPGA

- NN Translation into HLS (C++) using hls4ml (see next slide);
- Firmware design (I/O interfaces);
- Synthesis and implementation of the design;
- Production of the bitstream and programming of the FPGA;
- Running of the inference using an application on the host machine.

• • = • • = •

ELE NOR

The hls4ml package

https://fastmachinelearning.org/hls4ml

- Developed by members of the HEP community to translate ML algorithms written in Python into High Level Synthesis code;
- HLS allows the generation of hardware descriptive code (HDL) from behavioral descriptions contained in C++ program;
- The translated Python objects can be injected in the automatic workflow of proprietary software like Vivado from Xilinx Inc.

The PYNQ project

- PYNQ is an open-source project from Xilinx(R);
- It provides a Jupyter-based framework with Python APIs for using Xilinx platforms;
- The Python language opens up the benefits of programmable logic (PL) to people without in-depth knowledge of low-level programming languages.

https://pynq.readthedocs.io

<日

<</p>

5 1 SQA

An introduction to PYNQ

- The overlay class is the core of the library;
- An overlay object is built providing the FPGA design to run on the PL;
- FPGA is programmed and relevant interface is available through PYNQ API function calls;
- It is possible to accelerate a software application, or to customize the hardware platform for a particular application.
- 1 from pynq import Overlay
- 2
- 3 overlay = Overlay("designbitstream.xclbin") # or .awsxclbin
- 4 result = overlay.<function described in FPGA design>

Dr. Marco Lorusso

> < = > < = > = = = < < <

The testing ground: AWS F1 Instances

Cloud computing is used to test the capabilities of these tools in preparation for deployment of FPGA accelerator cards in a local server.

- Part of the AWS Cloud Computing catalogue;
- EC2 F1 instances use FPGAs to enable delivery of custom hardware accelerations;
- Packaged with tools to develop, simulate, debug, and compile a design;
- Once the FPGA design is complete, it can be registered as an Amazon FPGA Image (AFI) and be reused across different F1 instances.

The tested models

To **test** the **workflow** and the **performance**, **two Neural Networks** have been considered:

- Classifier (pattern recognition) using the IRIS database;
- Regressor in the context of triggering at the CMS experiment at CERN:
 - NN predicts transverse momentum of muons using their position and direction in the detector.

Deploying on F1

- ► Follow the Application Acceleration development flow, offered by Vitis[™], targeting data center acceleration cards;
- Upload the bitstream to a S3 bucket and request the creation of an Amazon FPGA Image (AFI) accessible from all F1 instances;
- Write a Pyhton script using PYNQ APIs.

A "more traditional" approach is to use **OpenCL** to write the host application: both ways follow the **same** list of **basic instructions**.

OpenCL vs PYNQ

The first thing to do in both cases, is to program the device and **initialize** the software context.

```
1
     auto devices = xcl::get_xil_devices();
     auto fileBuf = xcl::read_binary_file(binaryFile);
2
3
     cl::Program::Binaries bins{{fileBuf.data(),
    \hookrightarrow fileBuf.size()}:
                                                                 import pynq
     DCL_CHECK(err, context = cl::Context({device}, NULL, 1
4
    \hookrightarrow NULL, NULL, &err));
                                                                 ov =
    OCL_CHECK(err, q = cl::CommandQueue(context, {device},
                                                                 → pyng.Overlay("model_binary.awsxclbin")
    \hookrightarrow CL_QUEUE_PROFILING_ENABLE, &err));
                                                                 nn = ov.mvproject
   OCL_CHECK(err, cl::Program program(context, {device}]
6
    \hookrightarrow bins, NULL, &err));
```

```
7
    OCL_CHECK(err, krnl_vector_add = cl::Kernel(program,
     \hookrightarrow "vadd", &err));
```

In OpenCL host and FPGA **buffers** need to be handled separately and linked after creation; with PYNQ, the user is only presented with a single interface for both:

```
1
     std::vector<int, aligned allocator<int>>

→ source in1(DATA SIZE);

                                                    inp = pvng.allocate(27, 'u2')
    OCL_CHECK(err, 1::Buffer buffer_in1(context,
        CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
                                                         out = pyng.allocate(1, 'u2')
3
                                                    2
       ↔ vector_size_bytes,
4
        source_in1.data(), &err))
```

Dr. Marco Lorusso

OpenCL vs PYNQ (cont'd)

To **initiate data transfers** the direction as a function parameter must be specified in OpenCL, while in PYNQ the same is done with a specific function:

To **run the kernel** in OpenCL each kernel argument need to be set explicitly using the setArgs() function, before starting the execution with enqueueTask(); in PYNQ, the .call() function does everything in a single line.

Finally, the **output is retrieved** in both cases similarly to the input transfer:

Dr. Marco Lorusso

Timing Comparison

A **difference** in **computation times** can be seen between the same algorithm deployed with PYNQ and OpenCL:

▲ロト▲聞ト▲目ト▲目ト 回目 のQ@

Inference 14248

Input injection Entries 89.19 7.349

14248

87.19

5.341

Entries Mean

Std Dev

Mean

Std Dev

Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance

Inference comparison

In both the regressor and classifier case the models' output have been validated against the OpenCL im-

Regressor small difference traceable to different implementation of floating point to fixed point conversion;

Classifier difference in outputs not enough to change class assignement.

Summary and conclusions

- This work is still in progress (i.e. kernel optimization);
- The possibility of deploying a Neural Network on a FPGA inside an AWS instance has been explored;
- A fast and easy-to-use alternative to host applications written in **OpenCL** has been found in **PYNQ** using the **Python** programming language;
- There seems to be no important drawbacks from using this new approach.

= 200

Thank you!

Dr. Marco Lorusso

< □ ▶ < 部 ▶ < E ▶ < E ▶ 是| = ぐ) Q (~ Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance

Backup

Dr. Marco Lorusso

< □ ▶ < 部 ▶ < E ▶ < E ▶ E = ○ Q ○</p>
Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance

Dataset to train and test the NN

The entire dataset contains about 300000 simulated muons with a range in p_T from 3 to 200 GeV/c. Based on trigger primitives, a set of information is included in order to predict the muon p_T :

- Primitives' position (wheel, sector, \u03c6) for each station crossed by the particle;
- **Direction** of the primitives in CMS global coordinates (ϕ_b) .
- Trigger primitives' quality (i.e. number of hits used to build a TP).

To perform the analysis a train/test split of 80%/20% was performed.

> < = > < = > = = = < < <

Artificial Neural Networks

The p_T assignment is currently carried out using **precompiled LUTs**. An alternative was explored using **Artificial Neural Network** (ANN):

- An ANN is a network designed to tackle non-linear learning problems;
- The Fully Connected Multilayer Perceptrons (MLPs) are made up of single units called *Perceptrons*;
- Perceptrons can be stacked together to build arbitrarily deep custom networks;

Graphical representation of a Perceptron.

- The NN *learns* during the training process by receiving input patterns together with the corresponding true target variable and finding the best set of weights;
- The weights are used to predict the output with unseen data.

Neural Network for regression

A Fully

Connected MLP was built using QKeras with:

- Input layer: 27 features;
- ▶ 6

hidden layers: 35, 20, 25, 40, 20, 15 nodes;

- **Output layer**: returns the *p*_T value.
- Activation function: Rectified Linear Unit;
- Weight pruned.

The model was **tested using a consumer CPU** before the hardware implementation.

Optimization techniques

To produce an **optimized NN** for **implementation** on an FPGA:

Quantization:

the parameters were converted **from double precision floating-points to fixed points** to exploit the efficiency of DSPs;

Pruning: connections

between nodes with low influence were **cut** to **minimize** the number of **paramaters** and operations during inference and **reduce the resources** needed for implementation.

Alma Mater Studiorum - University of Bologna

Quantization

In order to produce an **optimized NN** for **implementation** on an FPGA, the models were *quantized*:

ap_fixed<14,4>

- Quantization is the conversion from high-precision floating-points to normalized low-precision integers (*fixed-point*) parameters;
- QKeras is a Python package developed as a collaboration between Google and HEP researchers to build NN with quantized parameters;
- ► It has an easy-to-use API: there are drop-in replacements for the most common layers used with Keras (e.g. Dense → QDense).

• • = • • = •

Slimming techniques - Weight Pruning

When building a NN model,

the final hardware platform where the inference computation will be run, has to be considered.

- Weight Pruning is the elimination of unnecessary values in the weight tensor;
- Connections

between nodes with low influence are "cut" during the synthesis of the HLS design;

This is aimed at minimizing the number of parameters and operations involved in the inference computation.

After pruning

Iris classifier

Iris classifier latency

Dr. Marco Lorusso

Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance