Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance

Dr. Marco Lorusso

University of Bologna - Department of Physics and Astronomy

National Institute for Nuclear Physics - Bologna Division

24th March 2022
Field Programmable Gate Arrays (FPGAs) → Middle ground between ASICs and multipurpose CPUs:

▶ Programmables
to perform a wide range of tasks;

▶ Low-level/Near-metal implementation of algorithms → low latency;

▶ Blend the benefits of both hardware and software;

▶ Internal layout made up of logic blocks (LUTs, flipflops, Digital Signal Processor slices), embedded in a general routing structure.
Implementing a Neural Network on an FPGA

- **NN Translation into HLS** (C++) using *hls4ml* (see next slide);
- **Firmware design** (I/O interfaces);
- **Synthesis and implementation** of the design;
- Production of the **bitstream and programming** of the FPGA;
- **Running** of the inference using an application on the **host** machine.

Dr. Marco Lorusso
Alma Mater Studiorum - University of Bologna
The hls4ml package

Developed by members of the HEP community to translate **ML algorithms** written in **Python** into **High Level Synthesis** code;

- HLS allows the **generation** of **hardware descriptive code** (HDL) from **behavioral descriptions** contained in C++ program;

- The translated Python objects can be injected in the automatic workflow of proprietary software like Vivado from Xilinx Inc.

https://fastmachinelearning.org/hls4ml
The PYNQ project

- **PYNQ** is an open-source project from Xilinx®;
- It provides a Jupyter-based framework with Python APIs for using Xilinx platforms;
- The **Python language** opens up the **benefits of programmable logic (PL)** to people **without** in-depth knowledge of **low-level programming languages**.

https://pynq.readthedocs.io
An introduction to PYNQ

- The overlay class is the core of the library;
- An overlay object is built providing the FPGA design to run on the PL;
- FPGA is programmed and relevant interface is available through PYNQ API function calls;
- It is possible to accelerate a software application, or to customize the hardware platform for a particular application.

```python
from pynq import Overlay

overlay = Overlay("designbitstream.xclbin")  # or .awsxclbin
result = overlay.<function described in FPGA design>
```
The testing ground: AWS F1 Instances

Cloud computing is used to test the capabilities of these tools in preparation for deployment of FPGA accelerator cards in a local server.

- Part of the AWS Cloud Computing catalogue;
- EC2 F1 instances use FPGAs to enable delivery of custom hardware accelerations;
- Packaged with tools to develop, simulate, debug, and compile a design;
- Once the FPGA design is complete, it can be registered as an Amazon FPGA Image (AFI) and be reused across different F1 instances.
The tested models

To test the workflow and the performance, two Neural Networks have been considered:

- **Classifier** (pattern recognition) using the IRIS database;
- **Regressor** in the context of triggering at the CMS experiment at CERN:
 - NN predicts transverse momentum of muons using their position and direction in the detector.
Deploying on F1

- Follow the *Application Acceleration development flow*, offered by Vitis™, targeting data center acceleration cards;
- **Upload** the bitstream to a S3 bucket and request the creation of an *Amazon FPGA Image (AFI)* accessible from all F1 instances;
- Write a **Python script** using PYNQ APIs.

A "more traditional" approach is to use **OpenCL** to write the host application: both ways follow the **same** list of **basic instructions**.
OpenCL vs PYNQ

The first thing to do in both cases, is to **program the device and initialize** the software context.

```cpp
auto devices = xcl::get_xil_devices();
auto fileBuf = xcl::read_binary_file(binaryFile);
cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}},
OCL_CHECK(err, context = cl::Context({device}, NULL,
                                 NULL, NULL, &err));
OCL_CHECK(err, q = cl::CommandQueue(context, {device},
                                 CL_QUEUE_PROFILING_ENABLE, &err));
OCL_CHECK(err, cl::Program program(context, {device},
                                 bins, NULL, &err));
OCL_CHECK(err, krnl_vector_add = cl::Kernel(program,
                                 "vadd", &err));
```

In OpenCL host and FPGA **buffers** need to be handled separately and linked after creation; with PYNQ, the user is only presented with a single interface for both:

```cpp
std::vector<int, aligned_allocator<int>>
source_in1(DATA_SIZE);
OCL_CHECK(err, l::Buffer buffer_in1(context,
                                 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
                                 vector_size_bytes,
                                 source_in1.data(), &err))
```

```python
import pynq
ov =
    pynq.Overlay("model_binary.awsxclbin")
nn = ov.myproject
```

```python
inp = pynq.allocate(27, 'u2')
out = pynq.allocate(1, 'u2')
```
OpenCL vs PYNQ (cont’d)

To initiate data transfers the direction as a function parameter must be specified in OpenCL, while in PYNQ the same is done with a specific function:

```c
OCL_CHECK(err, err = 
q.enqueueMigrateMemObjects({buffer_input}, 0 /*0 means from host*/ ,NULL,&eventinp));
```

To run the kernel in OpenCL each kernel argument need to be set explicitly using the setArgs() function, before starting the execution with enqueueTask(); in PYNQ, the .call() function does everything in a single line.

```c
std::vector<int, aligned_allocator<int>>
source_in1(DATA_SIZE);
OCL_CHECK(err, l::Buffer buffer_in1(context,
CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
vector_size_bytes,
source_in1.data(), &err))
```

Finally, the output is retrieved in both cases similarly to the input transfer:

```c
OCL_CHECK(err, err = 
q.enqueueMigrateMemObjects({buffer_output},
CL_MIGRATE_MEM_OBJECT_HOST));
```

Dr. Marco Lorusso
Alma Mater Studiorum - University of Bologna
Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance
Timing Comparison

A **difference in computation times** can be seen between the same algorithm deployed with PYNQ and OpenCL:

![Histogram of computation times for PYNQ and OpenCL](image)

Dr. Marco Lorusso
Alma Mater Studiorum - University of Bologna

Machine Learning inference using PYNQ environment in an AWS EC2 F1 Instance
Inference comparison

In both the regressor and classifier case the models’ output have been validated against the OpenCL implementation:

- **Regressor** small difference traceable to different implementation of floating point to fixed point conversion;

- **Classifier** difference in outputs not enough to change class assignment.
Summary and conclusions

- This work is still in progress (i.e. kernel optimization);
- The possibility of deploying a Neural Network on a FPGA inside an AWS instance has been explored;
- A fast and easy-to-use alternative to host applications written in OpenCL has been found in PYNQ using the Python programming language;
- There seems to be no important drawbacks from using this new approach.
Thank you!
Backup
Dataset to train and test the NN

The entire dataset contains about 300000 simulated muons with a range in p_T from 3 to 200 GeV/c. Based on trigger primitives, a set of information is included in order to predict the muon p_T:

- **Primitives’ position** (wheel, sector, ϕ) for each station crossed by the particle;
- **Direction** of the primitives in CMS global coordinates (ϕ_b).
- **Trigger primitives’ quality** (i.e. number of hits used to build a TP).

To perform the analysis a train/test split of 80%/20% was performed.
Artificial Neural Networks

The p_T assignment is currently carried out using precompiled LUTs. An alternative was explored using Artificial Neural Network (ANN):

- An ANN is a network designed to tackle non-linear learning problems;
- The Fully Connected Multilayer Perceptrons (MLPs) are made up of single units called Perceptrons;
- Perceptrons can be stacked together to build arbitrarily deep custom networks;
- The NN learns during the training process by receiving input patterns together with the corresponding true target variable and finding the best set of weights;
- The weights are used to predict the output with unseen data.
Neural Network for regression

A Fully Connected MLP was built using QKeras with:

- **Input layer**: 27 features;
- **6 hidden layers**: 35, 20, 25, 40, 20, 15 nodes;
- **Output layer**: returns the p_T value.
- **Activation function**: Rectified Linear Unit;
- **Weight pruned**.

The model was tested using a consumer CPU before the hardware implementation.
Optimization techniques

To produce an optimized **NN** for **implementation** on an FPGA:

- **Quantization:**
 the parameters were converted **from double precision floating-points to fixed points** to exploit the efficiency of DSPs;

- **Pruning: connections**
 between nodes with low influence were **cut to minimize** the number of **parameters and operations** during inference and **reduce the resources** needed for implementation.
Quantization

In order to produce an **optimized NN** for **implementation** on an FPGA, the models were **quantized**:

- **Quantization** is the conversion **from high-precision floating-points** to **normalized low-precision integers** (**fixed-point**) parameters;
- **QKeras** is a Python package developed as a collaboration between Google and HEP researchers to **build NN with quantized parameters**;
- It has an easy-to-use API: there are **drop-in replacements** for the most common layers used with Keras (e.g. Dense \rightarrow QDense).

```python
QDense(64, kernel_quantizer = quantized_bits(6,0),
       bias_quantizer = quantized_bits(6,0)(x))
QActivation(’quantized_relu(6,0)’)(x)
```
Slimming techniques - Weight Pruning

When building a NN model, the final hardware platform where the inference computation will be run, has to be considered.

- **Weight Pruning** is the elimination of unnecessary values in the weight tensor;
- Connections between nodes with low influence are "cut" during the synthesis of the HLS design;
- This is aimed at minimizing the number of parameters and operations involved in the inference computation.
Iris classifier latency

- OpenCL
- PYNQ

Sample Time (µs)