
Container Security:
What Could Possibly Go Wrong?

Daniel Kouřil
Masaryk University, CESNET

What is a container?
● fundamentally, a container is just a running process

● it is isolated from the host and from other processes

● there are different containerization technologies available
(Docker, Podman, Singularity, LXD, ...)

○ in this tutorial, we will focus mainly on Docker

2

Docker Terminology
● Docker container image - a standalone package of files, which includes everything

needed to run an application
(code, runtime, system tools, system libraries and settings)

● an image is usually pulled from a registry to a host machine
(e.g. DockerHub)

● a Docker container - a running instance of an image

● a host machine runs the container engine (Docker Daemon) and manages
individual containers

3

Docker Architecture

4
https://docs.docker.com/get-started/overview/

Docker Container Creation
● the image is opened up and the filesystem of that image is copied into a

temporary archive on the host

● Docker filesystem is a stacked file system of individual layers stacked on “mount”

● the ‘/’ root directory of the container is mounted and available on the host

/var/lib/docker/overlay2/51415bc9cd3ab2c47d218a897516ea2bf0545595fadf4a167ed5cfd3230a5f99/

● changes to the directory are visible from both sides (host and container)

● when the container is removed, any changes to its state disappear unless
“committed” via dockerd

5

Starting Docker Container Processes
● the container engine manages the process tree natively on the kernel

● to provide application sandboxing, Docker uses Linux namespaces and cgroups

● when you start a container with docker run, Docker creates a set of namespaces
and control groups

6

Namespaces
● Docker Engine uses the following namespaces on Linux

○ PID namespace for process isolation

○ NET namespace for managing/separating network interfaces

○ IPC namespace for separating inter-process communication

○ MNT namespace for managing/separating filesystem mount points

○ UTS namespace for isolating kernel and version identifiers
(mainly to set the hostname and domainname visible to the process)

○ User ID (user) namespace for privilege isolation

● user namespace must be enabled on purpose, it is not used by default

7

PID namespace
● allows to establish separate process trees

● the complete picture still visible from the host (outside the namespace)

8

root# docker run --rm -it debian/ps bash
root@3146c2faec9b:/# dash
ps af

 PID TTY STAT TIME COMMAND
 1 pts/0 Ss 0:00 bash
 6 pts/0 S 0:00 dash
 7 pts/0 R+ 0:00 _ ps af

 1029 ? Ssl 7:48 /usr/bin/containerd
28834 ? Sl 0:00 _ containerd-shim -namespace moby ……...
28851 pts/0 Ss 0:00 _ bash
28899 pts/0 S+ 0:00 _ dash

User ID (user) Namespace
● enables different uid/gid structures visible to the kernel

● mapping between uids in the namespace and “global” uids

9

global (host) id’s
● 0
● 1
● ….
● 1000
● 1001
● …
● 100000
● 100001

id’s in the namespace
● 0
● 1

● by default, user namespace is not enabled by Docker, i.e.
root in the container is root in the host !

Cgroups I.
● short for control groups

● they allow Docker Engine to share available system resources

● they implement resource limiting for different resources (CPU, disk I/O, etc.)

● they help to ensure that a single container cannot bring the system down

● cgroups are organized in a (tree) hierarchy for a given cgroup type

10

Cgroups II.
● a process (thread, task) may be assigned one cgroup

○ access via the /sys pseudo-filesystem is the simplest (/sys/fs/cgroup)

● Setting up a cgroup

create a specific cgroup:

mkdir /sys/fs/cgroup/memory/web

manipulate with the cgroup parameters using file in /sys/fs/cgroup/memory/web

enter the new cgroup with the current shell to apply to limit:

echo $$ > /sys/fs/cgroup/memory/cgroup.procs

11

Linux Kernel Capabilities
● capabilities turn the binary “root/non-root” dichotomy into a fine-grained access

control system

● by default, Docker starts containers with a restricted set of capabilities

● Docker supports the addition and removal of capabilities

● additional capabilities extends the utility but has security implications, too

● a container started with --privileged flag obtains all capabilities

● running without --privileged doesn’t mean the container doesn’t have root
privileges!

 12

I am the root. Or not?
● multiple levels of the root privileges, from an unprivileged root user:

○ if user namespace is enabled, the root inside a container has no root
privileges outside in the host system

○ by default, the root in a container has some privileges
■ but these are restricted by the default set of capabilities

○ we can explicitly add extra capabilities to our root in a container

○ with the --privileged flag, we have full root rights granted

13

14

Docker Daemon
● running containers (and applications) with Docker implies running the Docker

Daemon

● to control it, it requires the root privileges, or a docker group membership

● only trusted users should be allowed to control your Docker Daemon

● it allows you to share a directory between the Docker host and a guest container

● e.g. we can start a container where the /host directory is the / directory on your
host

15

Docker API
● an API for interacting with the Docker Daemon

● by default, the Docker Daemon listens for Docker API requests at a unix domain
socket created at /var/run/docker.sock

● with -H it is possible to make the Docker Daemon listen on a specific IP and a port

● you could set it to 0.0.0.0:2375 or a specific host IP to give access to everybody

● Docker API requests go, by default, to the Docker Daemon of the host

16

https://docs.docker.com/engine/api/
https://docs.docker.com/engine/api/

Docker vs. chroot command
● a container isn’t instantiated by the user but the Docker Daemon!

● anyone who is allowed to communicate with the Docker Daemon can manage
containers

● that includes using any configuration parameters

● they can play with binding/mounting files/directories

● or decide which user id will be used in the container
○ including root (unlike eg. chroot) !

17

Container Security

Threat Landscape
● proper deployment and configuration requires understanding the technology

● image management (integrity and authenticity of the image)

● trust in the image maintainer and the repository operator

● malicious images may be found even in an official registry

https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/

19

Usual Best Practice
● especially proper vulnerability/patch management

● it is often kernel-related and therefore requiring reboot

● updates not always available

● extremely important (couple of vulns over the past few years)

● out of scope for today

20

Escaping
● a very general term

● it does not necessarily mean controlling the host system

● data access (according to the C.I.A triad):

○ reading violating C.

○ modifying violating I.

● executing code outside the container (assigned cgroups and namely namespaces)

21

Escaping from/using Containers
● get access off the barriers (e.g. mounting filesystem while making a docker)

● inject a “hook” that is invoked by another party in the system

○ crontab rule, a kernel “notifier” running command on certain events

○ must run outside the container - APIs (e.g. inotify) won’t help

22

Examples of Docker-related incidents
● unprotected access to Docker Daemon over the Internet

○ revealed by common Internet scans

○ instantiation of malicious containers used for dDoS activities

● stolen credentials providing access to the Docker Daemon
○ used to deploy a container set up in a way allowing breaking the isolation

○ the attackers escaped to the host system

○ an deployed crypto-mining software and misused the resources

23

Other kernel security features
● it is possible to enhance Docker security with systems like TOMOYO, AppArmor,

SELinux, etc.

● you can also run the kernel with GRSEC and PAX

● all these extra security features require extra effort

● some of them are only for containers and not for the Docker Daemon

● as of Docker 1.10 User Namespaces are supported directly by the Docker
Daemon

24

Cheat Sheets

Docker Cheat Sheet I.
start a new container from an image
docker run IMAGE

start a new container from an image with a command
docker run IMAGE command

start a new container in background
docker run -d IMAGE

start a new container and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE

26

Docker Cheat Sheet II.
show a list of running containers stop a
running container
docker ps
 docker stop CONTAINER

show a list of all containers
 start a stopped container
docker ps -a
 docker start CONTAINER

delete a container
 download an image
docker rm CONTAINER
 docker pull IMAGE
start a shell inside a running container
docker exec -it CONTAINER EXECUTABLE

27

Practical Part

Accessing the environment
 ● Two things:

○ access to the web portal

○ access to the virtual machines

● Portal access

○ Book an account at

■ https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8

■ Just pick up a free line and put your name there (or other identifier of yours).

● Visit and login with the booked credentials.

○ Use “Login with local issuer”

29

https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8
https://docs.google.com/spreadsheets/d/1xo2TBjov7YU_HaHrLjW4b4ZQI0Bg5cv47owYI1GldP8

30

Resume training run

31

Access to machines
● SSH access

○ ssh -p PORT training@demo.crp.kypo.muni.cz

■ the PORT and the password is available from the sheet with booked
credentials

● Console access

○ From the portal you can use the embedded console

○ See the visualised topology, found the “main” machine (10.20.30.100) and
select “Open console”.

32

mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz
mailto:training@demo.crp.kypo.muni.cz

