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Problem: Classification of QCD Jets

QCD or What?

The problem is framed as anomaly detection: no assumption of signal form!

• Knowledge about the QCD background

is only necessary.

• The model learns the QCD features,

instead of adapting to the signal (as

a classifier would do.)

• Must define an AD score.

• The signal samples are only used

for evaluating the final performance.

⇒ The AD model is signal agnostic!
Average of 200k images each.
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http://arxiv.org/abs/1808.08979
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Dataset: QCD vs Top Jets

Data from the Top-tagging challenge: 200k QCD and 200k Top jets.

• Simulated jets with Pythia8 at 14TeV.

• Selection: jets with 𝑝𝑇 ∈ [550,650] GeV and 𝜂 < 2.

• Pre-processing: each jet has at most 200 4-vectors; these are

centered, rotated, and flipped in both axes. Then pixelization

occurs with a slight crop, yielding 40 × 40 images. Finally,

the pixels are normalized to sum to one.

• Pixel size is Δ𝜂, Δ𝜑 = [0.029,0.035].

• Train-test split: 75/25 for QCD, 0/100 Tops.

QCD or What?

ML Landscape of Top Taggers

A random sample.
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http://arxiv.org/abs/1808.08979
https://scipost.org/10.21468/SciPostPhys.7.1.014
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Task: Anomaly Detection

Is about distinguishing anomalies (e.g. Top jets) from normal data (e.g. QCD Jets):

• Idea: normal samples have either low error

or high-likelihood.

• Anomalies can be either erroneous, rare,

or interesting events.

• Can be solved either by: estimating data 

density, thresholding distances or errors, 

clustering, or classification.

• Our approach is self-supervised and assumes

a normal-only (N) set of samples: QCD jets. Figure from Google AI Blog
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https://ai.googleblog.com/2023/02/unsupervised-and-semi-supervised.html
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Method: Auto-Encoders

Auto-Encoders (AEs) are a neural network model trained to reconstruct its inputs:

• The encoder has to compress the input into a meaningful latent space 𝑍 (bottleneck)

• The decoder reconstructs from the compressed representation.

• AEs and variants are suitable for anomaly detection, since the training doesn’t require labels!

• In context of AD, the AE have to capture the background peculiarities.

𝐼 𝑒

𝐸

Decoder

𝐸
𝑚

Encoder

bottleneck

input reconstruction
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Variational Auto-Encoders

Variational Auto-Encoders (VAEs) are probabilistic models:

• The encoder 𝑞𝜙, parameterizes a Gaussian distribution 𝑧 ∼ 𝑁(𝜇𝜙 𝑥 , Σ𝜙(𝑥)).

• The decoder 𝑝𝜃, reconstructs from the sampled latent vectors.

• The latent space encodes continuous features.

• VAEs can generate new samples that look like the inputs.

DecoderEncoder

𝑞𝜙 𝑧 𝑥 = 𝑁(𝜇(𝑥), Σ(𝑥))

input reconstruction

Auto-encoding Variational Bayes
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https://arxiv.org/abs/1312.6114
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Reparameterization Trick

Issue: cannot backpropagate through stochastic (sampling) nodes

Auto-encoding Variational Bayes

Intro to Deep Learning

𝑧 ∼ 𝑞𝜙 𝑧 𝑥
𝑧 = 𝜇𝜙 𝑥 + Σ𝜙 𝑥 ⊙ 𝜖
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https://arxiv.org/abs/1312.6114
http://introtodeeplearning.com/2019/materials/2019_6S191_L4.pdf
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Categorical VAE

Categorical VAEs are discrete latent variable models:

• The encoder 𝑞𝜙, parameterizes up to 𝐾 Categorical distributions with 𝐶 classes each.

• The decoder 𝑝𝜃, reconstructs from the sampled latent vectors.

• The latent space encodes discrete features: finite and enumerable quantities, like counts.

• The Categorical is relaxed by a temperature parameter, 𝜏: 𝜏 → 0 (categorical), 𝜏 → ∞ (uniform).

Decoder

𝐸
𝑚

Encoder

𝑞𝜙 𝑧 𝑥

input reconstruction

Concrete Reparameterization with Gumbel-Softmax

⋮

The Concrete Distribution: continuous relaxation
of discrete random variables
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https://arxiv.org/pdf/1611.01144.pdf
https://arxiv.org/pdf/1611.00712.pdf
https://arxiv.org/pdf/1611.00712.pdf
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Gumbel-Softmax Trick

Issue: the categorical distribution is not differentiable

Concrete Reparameterization with Gumbel-Softmax

The Concrete Distribution: continuous relaxation
of discrete random variables

To reparameterize:
1. Forward encoder to get logits

𝛼 = 𝑞𝜙(𝑥)

2. Sample from Uniform distribution

𝑢 ∼ 𝑈(0,1)

3. Compute Gumbel noise 𝑔

𝑔 = − log− log 𝑢

4. Get the Gumbel-Softmax samples

𝑞 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝛼 + 𝑔

𝜏
)

Original form
Differentiable 

form

⇒⇒
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https://arxiv.org/pdf/1611.01144.pdf
https://arxiv.org/pdf/1611.00712.pdf
https://arxiv.org/pdf/1611.00712.pdf
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Joint-VAE

Can encode both continuous and discrete features:

How the model is trained:

𝐿𝜙,𝜃 𝑥 = 𝐿𝑟𝑒𝑐𝑜(𝑥, ො𝑥) + 𝛽𝐷𝐾𝐿 𝑵 𝝁𝝓, 𝚺𝝓 𝑁 0, 𝐼 + 𝛽𝐷𝐾𝐿 𝑪𝒂𝒕 𝜶𝝓, 𝝉 𝐶𝑎𝑡(1/𝐶)
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Learn Disentangled Joint Continuous and Discrete 
Representations

Continuous KL Discrete KL

Priors 𝑝(𝑧)

DecoderEncoder

input reconstruction

⊕

Categorical

Gaussian

https://arxiv.org/abs/1804.00104
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Reconstruction-based Anomaly Scores

AD scores can be defined from reconstructed images 𝑥′:

• MSE: sum of squared differences of pixel values 𝑃

𝑆𝑀𝑆𝐸 𝑥, 𝑥′ = σ𝑝∈𝑃 𝑥𝑝 − 𝑥𝑝
′ 2

• BCE: sum of binary-cross entropies on pixels (note: only if normalized in [0, 1])

𝑆𝐵𝐶𝐸 𝑥, 𝑥′ = −σ𝑝∈𝑃 𝑥𝑝 log 𝑥𝑝
′ + 1 − 𝑥𝑝 log 1 − 𝑥𝑝

′

• Dice (see ref.): measures the overlap between the 

predicted and original image

• PixelDiff: difference of pixel sums (*)

𝑆𝑑𝑖𝑓𝑓 𝑥, 𝑥′ = 1 − σ𝑝∈𝑃 𝑥𝑝
′
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Decoder

reconstruction

Learning to Predict Crisp Boundaries

𝑆𝐷𝑖𝑐𝑒 𝑥, 𝑥′ =
σ𝑝∈𝑃 𝑥𝑝

2 + σ𝑝∈𝑃 𝑥𝑝
′ 2

2σ𝑝∈𝑃 𝑥𝑝 − 𝑥𝑝
′

*True image sum to one.

https://openaccess.thecvf.com/content_ECCV_2018/papers/Ruoxi_Deng_Learning_to_Predict_ECCV_2018_paper.pdf
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Latent-based Anomaly Scores

AD scores defined from the joint latent space 𝑧 = (𝛼, 𝜇, Σ):

• Idea: KL divergence between learned distribution and prior!

• KL Continuous: divergence between learned Normal 𝑁 𝜇, Σ

and standard Normal prior 𝑁(0, 𝐼)

𝑆𝐾𝐿,𝑐𝑜𝑛𝑡 𝜇, Σ = −
1

2
෍

𝑖
(1 + log Σ𝑖𝑖 − 𝜇𝑖

2 − expΣ𝑖𝑖)

• KL Discrete: divergence between relaxed Categorical 𝐶𝑎𝑡(𝛼, 𝜏) and the uniform Gumbel-

Softmax prior 𝐶𝑎𝑡(1/𝐶) – where 𝐶 is the number of classes.

𝑆𝐾𝐿,𝑑𝑖𝑠𝑐 𝛼 =෍
𝑖
𝜋𝑖 log 𝜋𝑖 − (𝜋𝑖 log 1/𝐶)
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Encoder

input

where 𝜋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼)

*Sums are over latent dimensions.
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Discussion: Pros & Cons

Reconstruction-based AD:

• Easier to define anomaly scores, e.g. from common loss functions and metrics.

• Scores values can be interpreted by image quality metrics or visual inspection.

• Requires forward pass of whole model (encoder + decoder): slower.

Latent-based AD:

• Possibly difficult to interpret: high-dim latent space cannot be visualized.

• Scores can be difficult to design, e.g. analytical KLD – but equally performant.

• Faster: requires only encoder predictions.

• Suitable for model optimization and FPGA deployment.

Luca Anzalone 16
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Compression: Quantization with QKeras

Quantization transforms floating-point arithmetic to fixed-point precision:

• Less #bits to reduce memory footprint, and FPGA resources.

• Quantization is applied on both weights, and activations.

• Quantization-Aware-Training (QAT) maintains high accuracy at 

low-precision <16, 6>: total with of 16bits, 10bits for floats 

and 6bits for integers.

• Yields lower latency and energy consumption [J] (by QTools).

Luca Anzalone 18

Energy consumption 
reduced by 39%

Not quantized:

https://github.com/google/qkeras
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Field-Programmable Gate Arrays

FPGAs are hardware-programmable devices:

Luca Anzalone 19

A configurable logic block.An FPGA is made of many replicated units.
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The HLS4ML Python Package

ML models have to be translated to Hardware Description Language (HDL) to deploy on FPGA:

• HLS4ML does this.

• Converts layers to

High Level Synthesis

code, then C++.

• It optimizes also.

• Finally, proprietary

SW compilation.

• Synthesized code

can be simulated

before deployment.

Luca Anzalone 20

https://github.com/fastmachinelearning/hls4ml
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FPGA Implementation Feasibility Study

FPGA are programmable accelerators that can enable real-time inference:

• Network synthesis is done via HLS4ML toolkit.

• From a synthesized layer or block, we can estimate the resource factor 𝜌 via:

• To estimate FPGA resources (e.g., LUTs) multiply 𝜌 by a known layer or block:

Luca Anzalone 21

conv2_b0_0 won’t fit in 
FPGA, so we estimated its 
resource consumption.

Formula based on 
convolution computational 

complexity from [ref]: 
𝑂(𝑘2(ℎ𝑤)/𝑠𝑑𝑖𝑛𝑑𝑜𝑢𝑡)

https://github.com/fastmachinelearning/hls4ml
https://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
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Reconstructed 
Samples

Reconstructed images averaged

over test-set.

The ground-truth is on the left.

• QCD (top-row) are closely 

reconstructed: low error.

• Tops (bottom) are predicted 

to be QCD-like: high error. 

QCD

Tops
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Joint Latent 
Space

Learned latent spaces by our 

Joint-VAE; projected to 2d.

• Spaces: a 32-d Gaussian, and 

20-d Categorical.

• We can see the 20 class-

clusters for the categorical 

space.
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content
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Reconstruction-based Scores: Large Model
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Latent-based Scores: Large Model

By combining both continuous and discrete

KL divergences, is possible to further improve

the anomaly score.
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content
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Reconstruction-based Scores: Quantized Model
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Latent-based Scores: Quantized Model

By quantizing we lose performance also on the

latent space, so the KL scores.

But the trend is maintained.

Luca Anzalone 28
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Comparison: Large vs Quantized Model

Summary of ROC-AUC performance per metric:

• Large model has 262k (encoder) + 545k (decoder)

params: 6 residual blocks.

• Quantized model has 10k (constraint*: max. 1024 

params per layer) + 545k params: 4 residual blocks.

• Latent dimensions for both models are 

32 (continuous) and 20 (discrete).

• Decoder is the same ⇒ similar AD performance.

• #params and quantization impacts on encoder,

KL-based metrics.
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AD Score Large Quantized

MSE 38,35% 38,33%

Pixel-diff 84,18% 84,4%

BCE 84,35% 84,54%

Total
(Dice + BCE)

85,05% 85,25%

KL Cont. 86,45% 80,88%

KL Discrete 73,78% 77,46%

KL Total 
(Cont. + Disc.)

86,62% 81,17%

*Constraint is due to Vivado synthesis.
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Summary

Variational Auto-Encoders are suitable models for anomaly detection:

• We don’t assume any specific signal ⇒ not sensitive to particular BSM scenario.

• The model is only trained to reconstruct the QCD background.

• Combining both continuous and discrete latent spaces achieves better AD performance.

• Latent-based AD is competitive with reconstruction-based scores, 

allowing to deploy only the encoder model.

• Model compression via weight and activation quantization can be done with Qkeras: saving 

energy, memory, and accelerator resources.

• Model synthesis for FPGA deployment can be done by HLS4ML.

Luca Anzalone 31
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Limitations and Outlook

General limitations of such kind of approaches:

• Need test samples of different kind of signals to asses generalization to BSM models.

• The VAE method is simple to train, but optimizes a different objective (i.e. reconstruction loss)

⇒ we have little control about maximizing the target AD score (e.g. KL-divergence)

• FPGA deployment can be challenging: accelerator resources are limited while DL layers are 

costly (like convolutions.), especially on image-like inputs.

• Moreover, vendors can add additional constraints: like maximum #params per layer.

• Limited support of libraries: for example HLS4ML is compatible with few common layers.

• Need better methods that yield very compact models: knowledge distillation?

Luca Anzalone 32



Thanks for the Attention!

Questions?

Contacts:

lorenzo.valente3@studio.unibo.it

luca.anzalone2@unibo.it

marco.lorusso11@unibo.it

github.com/LorenzoValente3/JointVAE4AD

mailto:lorenzo.valente3@studio.unibo.it
mailto:luca.anzalone2@unibo.it
mailto:marco.lorusso11@unibo.it
https://github.com/LorenzoValente3/JointVAE4AD
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