Physics analysis workflows and pipelines for the HL-LHC

Alexander Held¹, Oksana Shadura²
1 University of Wisconsin-Madison
2 University of Nebraska-Lincoln
ISGC 2023
https://indico4.twgrid.org/event/25/
March 23, 2023

The Large Hadron Collider

- The Large Hadron Collider (LHC) collides protons with 13.6 TeV in a 27 km tunnel, 100 m underground
- Collisions recorded by multiple detectors and (after a lot of processing) available to physicists as columnar data
- 1 row per collision event, filled with nested data characterizing collision

LHC ring overlaid over Taipei

Data analysis at the LHC and the HL-LHC

- Focusing here on the final steps of data analysis
- physicists turning columnar data into results ready for publication
- input: nested data structure per collision (~billions of rows)
- output: results of statistical inference, figures, tables, ...
- The upcoming High Luminosity LHC poses computational challenges
- significant data volume increases

projected computing resources required for ATLAS (not limited to end-user data analysis)

The Analysis Grand Challenge (AGC)

-The "Analysis Grand Challenge" (AGC) aims to help address the computing challenges of the HL-LHC

- The AGC has two components

1. define a physics analysis task of realistic scope \& scale
2. develop an analysis pipeline that implements the task

- find \& address performance bottlenecks \& usability concerns

IRIS-HEP and the Analysis Grand Challenge

- IRIS-HEP: "Institute for Research and Innovation in Software for High Energy Physics"
- software institute funded by the US National Science Foundation
- research \& development for the HL-LHC
- innovative algorithms for data reconstruction \& triggering
- analysis systems to reduce time-to-insight and maximize physics potential
- data organization, management and access systems
- more information: https://iris-hep.org/

institutes participating in IRIS-HEP

IRIS-HEP and the Analysis Grand Challenge

- AGC: "Analysis Grand Challenge"
- historically, an integration exercise
- test realistic end-to-end analysis pipelines aimed at HL-LHC use
- combine technologies being developed in various ares of IRIS-HEP \& adjacent ecosystem
- identify \& address performance bottlenecks and usability issues
- organized jointly with the US ATLAS \& US CMS operations programs

"Analysis" in the AGC context

- In view of the HL-LHC: "analysis" starts from centrally produced common data samples (= big tables of information)
- Includes all subsequent steps to produce results needed for publication
- extract relevant data
- (re-) calibrate objects (groups of columns) \& calculate systematic variations (new columns)
- filter events (rows) \& calculate observables (new columns)
- histogramming (for binned analyses)
- construct statistical model + perform statistical inference
- visualize results \& provide all relevant information to study analysis details
- Do all these steps in a reproducible way

Moving beyond an integration exercise

- Investigating the possibility of "interactive analysis": turnaround time of minutes or less
- made possible by highly parallel execution in short bursts, low latency \& heavy use of caching
- We hope that the AGC can be useful to the broader community!
- testbed for software library development
- environment to prototype analysis workflows
- functionality \& integration test for analysis facility development
interactive analysis in a notebook

AGC tools 2022 workshop

The AGC analysis setup

- Main AGC analysis task: ttbar cross-section measurement in single lepton channel
- includes simple top quark reconstruction
- setup chosen as it captures relevant workflow aspects and can easily be extended
- e.g. conversion into a beyond-the-Standard-Model search
- analysis task prominently features handling of systematic uncertainties
- Analysis is based on Run-2 CMS Open Data (~ 400 TB of data in MiniAOD format)
- Open Data is crucial: everyone can participate
- currently using 4 TB of ntuple inputs (pre-converted, ~1B events before cuts)

reconstructed top mass
- Goal of setup is showing functionality, not discovering new physics
- want to capture workflow, but can use made-up tools for evaluating calibrations \& systematic uncertainties

Systematics and other analyzer user experience aspects

- Handling systematic uncertainties is a key challenge in analysis workflows
- AGC analysis task includes different types of systematic uncertainties to mirror practical requirements
- weight-based uncertainties
- object-based systematic variations affecting kinematics (+ thereby event selection / observables)
- non-histogram-based uncertainties (e.g. cross-section uncertainties)
- Metadata handling
- capturing various bookkeeping aspects in analysis task
- Scale-out: from laptop to analysis facility
- challenge: write analysis implementation that can run anywhere

Pain points in analysis user experience, ordered

1. Systematics

Recurring topic throughout this workshop: this is not solved
2. Metadata

Finding \& handling information
3. Scale-out

Prototyping vs scale-out, different implementations / details on different sites Need for consistent environments across all resources

Analysis Ecosystem Workwshop II
User experience \& Declarative Languages summary

Tools and services in our implementation

- Employing stack of Python HEP libraries for analysis tasks
- ServiceX used as data delivery service
- Execution on a coffea-casa analysis facility

Analysis Facilities for execution

- coffea-casa is a prototype analysis facility for the HL-LHC
- interactive facility for columnar analysis providing analysis tools \& scaling to computing resources
- more information: https://iris-hep.org/projects/coffea-casa.htm|

Implementation: ttbar analysis in a notebook

- From data delivery to statistical inference in a notebook
multiple supported processing schemes

pattern 3: ServiceX followed by coffea

systematic variations

nuisance parameter pulls
ME variation
PS variation
post-fit distributions

\qquad
 $\geq x=\square=\square$ $=\square$

 $\square \geq-\square-\square$ $=\square=\square=\square$ $\pm=$

$=\mathrm{E}=\mathrm{E}=$
$\pm \square=\square$
$=5$ $\pm=$
$\mathrm{TV} \mathrm{V}=\mathrm{TV}$
$=$
$\cdots=\square=\square$
$\pm=\square=-$ $\square=\square \square$
$=-=-=-1$
$==$
$\square=$

Benchmarking results

- Benchmarking AGC implementation performance at the University of Nebraska-Lincoln CMS Tier-2
- tested various configurations of hardware, data pipeline and analysis task
- for more information, see this ACAT 2022 contribution

good scaling to hundreds of cores

efficient resource usage via Dask

On-demand columnar data delivery: ServiceX

- ServiceX is a data extraction and delivery service
- users provide list of datasets to process + instructions for how to extract data (e.g. declarative)
- ServiceX can be co-located with input datasets for fast execution
- columnar data is returned and cached
- subsequent executions can use the cache!

AGC "version 2" and future work

E. Kauffman at AGC demo day \#2

- Development of a "version 2" of the AGC analysis task is ongoing
- expanded task: more complexity and data to process
- inclusion of machine learning aspects (training \& inference)
- Develop \& compare different implementations
- e.g. implementation using ROOT RDataFrame
- Benchmarking
- investigate performance, identify potential additional bottlenecks \& implement solutions
- Longer term plan: differentiable analysis pipeline
- investigate end-to-end analysis optimization, evaluate usefulness vs cost of gradient information

AGC events

－Organizing yearly workshops
－Mix of tutorials，demonstrations，discussions \＆planning
－Next workshop：IRIS－HEP AGC workshop on May 3－5

IRIS－HEP AGC workshop 2023
－informal，short demos on latest developments
－broad mix of topics to bring together diverse audience
－examples：\＃1，\＃2（including recordings）
－this format works well！

First AGC＂demo day＂
IRIS－HEP／AGC Demo Day \＃1
（⿴囗玉 Friday 16 Dec 2022，17：00 \rightarrow 19：15 Europe／Berin
－304／1－007（CERN）
－Alexander Held（Unversity of Wisconsin Madison（US），Brian Paul Bockelman（Univesiliy of Wisconsin Madson（US），
Onsana Snadura（Unversily of Neoraska Lincoln（US））

covering a variety of topics it the Analysis crand Challenge sphere
covering a variety of topics it the Analysis crand Challenge sphere
and the interested community -
and the interested community -
Important links:
Important links:
Please help us fill this Google doc for ive notes
Reated Gittub issue analysis grad hallengets
Please help us fill this Google doc for ive notes
Reated Gittub issue analysis grad hallengets
Related Cithub issue: analysis-grand-challengen87
Email ist analysis sqand-challengee@irishep.org (sign up via
Related Cithub issue: analysis-grand-challengen87
Email ist analysis sqand-challengee@irishep.org (sign up via
Google group)
Voutube: hitps://youtubeb/AXHddik.k5 19 M
Google group)
Voutube: hitps://youtubeb/AXHddik.k5 19 M

Summary

- The Analysis Grand Challenge is an integration exercise to study HL-LHC analysis workflows
- Developed ttbar analysis task \& implementation based on CMS Open Data
- all data \& our implementation are publicly available
- We hope that the Analysis Grand Challenge can be useful to the broader community
- test analysis tools, compare different workflows, test analysis facilities, ...
- Upcoming workshop: https://indico.cern.ch/e/agc-workshop-2023
- Stay in touch via our mailing list
- analysis-grand-challenge@iris-hep.org (sign up at this Google group)

Give it a try!

- You can run our AGC analysis pipeline on Binder - Try it out today!
- All code also available on GitHub
- See also this PyHEP 2022 contribution
- includes recording of walkthrough

Thank you!

- The AGC is made possible thanks to the help of a large number of people working on many different projects.
- Thank you in particular to the teams behind:
- coffea-casa
- Scikit-HEP, coffea, IRIS-HEP Analysis Systems
- ServiceX, IRIS-HEP DOMA
- IRIS-HEP SSL
- CMS Open Data

Backup

Integration: connecting IRIS-HEP focus areas

Top quark pair production

