Physics analysis workflows and pipelines for the HL-LHC

Alexander Held¹, Oksana Shadura²

¹ University of Wisconsin–Madison ² University of Nebraska–Lincoln

ISGC 2023 https://indico4.twgrid.org/event/25/ March 23, 2023

1

This work was supported by the U.S. National Science Foundation (NSF) Cooperative Agreement OAC-1836650 (IRIS-HEP).

The Large Hadron Collider

- The Large Hadron Collider (LHC) collides protons with 13.6 TeV in a 27 km tunnel, 100 m underground
- Collisions recorded by multiple detectors and (after a lot of processing) available to physicists as columnar data
 - 1 row per collision event, filled with nested data characterizing collision

LHC ring overlaid over Taipei

Data analysis at the LHC and the HL-LHC

Focusing here on the final steps of data analysis

- physicists turning columnar data into results ready for publication
 - input: nested data structure per collision (~billions of rows)
 - output: results of statistical inference, figures, tables, ...
- The upcoming High Luminosity LHC poses computational challenges
 - significant data volume increases
 - R&D required to scale to the data analysis demands

projected computing resources required for ATLAS (not limited to end-user data analysis)

The Analysis Grand Challenge (AGC)

• The "Analysis Grand Challenge" (AGC) aims to help address the computing challenges of the HL-LHC

• The AGC has two components

1. define a physics analysis task of realistic scope & scale

2. develop an analysis pipeline that implements the task

- find & address performance bottlenecks & usability concerns

IRIS-HEP and the Analysis Grand Challenge

• IRIS-HEP: "Institute for Research and Innovation in Software for High Energy Physics"

- software institute funded by the US National Science Foundation
- research & development for the HL-LHC
 - innovative algorithms for data reconstruction & triggering
 - analysis systems to reduce time-to-insight and maximize physics potential
 - data organization, management and access systems
- more information: <u>https://iris-hep.org/</u>

institutes participating in IRIS-HEP

IRIS-HEP and the Analysis Grand Challenge

- AGC: "Analysis Grand Challenge"
 - historically, an integration exercise
 - test realistic end-to-end analysis pipelines aimed at HL-LHC use
 - combine technologies being developed in various ares of IRIS-HEP & adjacent ecosystem
 - identify & address performance bottlenecks and usability issues
 - organized jointly with the <u>US ATLAS</u> & <u>US CMS</u> operations programs

AGC combining IRIS-HEP focus areas

"Analysis" in the AGC context

- In view of the HL-LHC: "analysis" starts from centrally produced common data samples (= big tables of information)
- Includes all subsequent steps to produce results needed for publication
 - extract relevant data
 - (re-) calibrate objects (groups of columns) & calculate systematic variations (new columns)
 - filter events (rows) & calculate observables (new columns)
 - histogramming (for binned analyses)
 - construct statistical model + perform statistical inference
 - visualize results & provide all relevant information to study analysis details
- Do all these steps in a reproducible way

Moving beyond an integration exercise

- Investigating the possibility of "interactive analysis": turnaround time of minutes or less
 - made possible by highly parallel execution in short bursts, low latency & heavy use of caching
- We hope that the AGC can be useful to the broader community!
 - testbed for software library development
 - environment to prototype analysis workflows
 - functionality & integration test for analysis facility development

C a selfer of indicago edglace/decordeched/point/de/brech	iyee gand chahega haysecore oper-dalar Baa (softea ayya	969 80
e Edit View Run Karnel Git Tabs Settings Help	Reduction a	
https://coffee.af.uchicago.edu/usen/alexander.held@cerr 9,	B coffee keyneb ● B + X () () ▶ ■ () ≫ Markdows - () #*	8 Pyton 1 (orbit tel)
AGGREGATE TIME PER ACTION		8 Hytton 3 (pyrame)
BAN2WIDTH TYPES	# as a script) # asses def produce_all_the_histoprans(fileset);	
EAN2WIDTH WORKDRS	<pre># return await volls_produce_all_histopromot/fileset, use_dustwfalset</pre>	
CLUSTER MAP	# all_Aistograms = asyncia.rum(produce_all_the_Aistograms(filesof))	
CLUSTER MEMORY	<pre>slif 2IFLDE == "services detableder":</pre>	
COMPUTE TIME PER KEY	# media a slightly different scheme, not currently implemented raise Notimalemented/recrifturther processing of this method is not currently implemented")	
CPU	print(f"inexecution took (time.time() = t01.27) seconds")	
EVENT LOOP		
GPU MEMORY	[trape]avoes5-loca 40%	4/90 [00:34]
EPU UTILEANON	(https://woodd-locaDownloaded: 60%	6/10 (00:34)
DRAPH DROUP PEDGRESS	Przpzykwostał Joca 60%	6(10 (00:35)
020428	https://motif-iosaDownlaaded_62%	612 102 25
MENORY BY STY	Prizeubrosti-loca 60%	6(10, 200, 201
APROCESSING		
OCCUMANCY	[https://woodd-loca Downloaded: 00%	B(10 (00:00)
PROFILE	[https://woodd-loca 10%	1/10 (00-02)
PROFILE SERVER	[Vitps:]trootd-loca Downloaded: 10%	1/10 (00-32)
P9054£55	Wiges/woodd-loca 20%	2/10 100 281
SCHEDULER SYSTEM	N/gey/hooted-loca Devrivated: 30%	2/10 /00 20
TASK STREAM		
WORKERS	[Wigs_broad-loca 20%	5148 (501-23)
WORKERS CPU TWESSRES	[Mgp:dwoeld-locaDownloaded: 20%]	2(10 (00:33)
WORKERS DESK	Drapschoold-loca 40%	4/10 (00:31)
WORKERS MEMORY	Peter-Incost-Inca - Devrivated 505	6/10 100:111
WORKERS MINORY THEODERS	Ditas/houth-loca 10%	110 (03.20)
ACTIVATION NETWORK		
INCREMENTATIONS THERE ARE	[Https://sccad-locaDownloaded:10%	1/10 (00:20)
	(https://www.internet.com/	2(10) [00:29]
TERS C + NEW	(https://woeld-locaDownloaded: 20%	2(10) (00:29)
AF HTCondor Cluster duler Address: dis Sylessender-Jaheld-Abcern-Zech dask casa s	Inspecting the produced histograms	
based URL: June/bleander.hold@carv.ch/provg6787/ittatus ber of Cores: 4 ory: 12.72 GIB	Let's have a look at the data we obtained. We built histograms in two phase space regions, for multiple physics processes and systematic variations.	
tory: 12.72 G/B ther of Workers: 2	To all the set should	

interactive analysis in a notebook

AGC tools 2022 workshop

The AGC analysis setup

- Main AGC analysis task: ttbar cross-section measurement in single lepton channel
 - includes simple top quark reconstruction
 - setup chosen as it captures relevant workflow aspects and can easily be extended
 - e.g. conversion into a beyond-the-Standard-Model search
 - analysis task prominently features handling of systematic uncertainties
- Analysis is based on Run-2 CMS Open Data (~400 TB of data in MiniAOD format)
 - Open Data is crucial: everyone can participate
 - currently using 4 TB of ntuple inputs (pre-converted, ~1B events before cuts)
- Goal of setup is showing **functionality**, not discovering new physics
 - want to capture *workflow*, but can use made-up tools for evaluating calibrations & systematic uncertainties

Systematics and other analyzer user experience aspects

- Handling systematic uncertainties is a key challenge in analysis workflows
 - AGC analysis task includes different types of systematic uncertainties to mirror practical requirements
 - weight-based uncertainties
 - object-based systematic variations affecting kinematics (+ thereby event selection / observables)
 - non-histogram-based uncertainties (e.g. cross-section uncertainties)
- Metadata handling
 - capturing various bookkeeping aspects in analysis task
- Scale-out: from laptop to analysis facility
 - challenge: write analysis implementation that can run anywhere

Pain points in analysis user experience, ordered

1. Systematics

Recurring topic throughout this workshop: this is not solved

2. Metadata

• Finding & handling information

3. Scale-out

- Prototyping vs scale-out, different implementations / details on different sites
- Need for consistent environments across all resources

Analysis Ecosystem Workwshop II User experience & Declarative Languages summary

Tools and services in our implementation

- Employing stack of Python HEP libraries for analysis tasks
- ServiceX used as data delivery service
- Execution on a coffea-casa analysis facility

Analysis Facilities for execution

- coffea-casa is a prototype analysis facility for the HL-LHC
 - interactive facility for columnar analysis providing analysis tools & scaling to computing resources
 - more information: <u>https://iris-hep.org/projects/coffea-casa.html</u>

see <u>O. Shadura's talk</u> for

more information!

Implementation: ttbar analysis in a notebook

• From data delivery to statistical inference in a notebook

nuisance parameter pulls

post-fit distributions

coffea processor

2.72 weight variations peters (1.0 + np.strap((0.001, -0.001), dtype-np.flost32)) + ones(), Home

Physics analysis workflows and pipelines for the HL-LHC

Benchmarking results

- Benchmarking AGC implementation performance at the University of Nebraska–Lincoln CMS Tier-2
 - tested various configurations of hardware, data pipeline and analysis task
 - for more information, see this <u>ACAT 2022 contribution</u>

good scaling to hundreds of cores

efficient resource usage via Dask

On-demand columnar data delivery: ServiceX

- <u>ServiceX</u> is a data extraction and delivery service
 - users provide list of datasets to process + instructions for how to extract data (e.g. declarative)
 - ServiceX can be co-located with input datasets for fast execution
 - columnar data is returned and cached
 - subsequent executions can use the cache!

AGC "version 2" and future work

- Development of a "version 2" of the AGC analysis task is ongoing
 - expanded task: more complexity and data to process
 - inclusion of machine learning aspects (training & inference)
- Develop & compare different implementations
 - e.g. implementation using ROOT RDataFrame

Benchmarking

- investigate performance, identify potential additional bottlenecks & implement solutions
- Longer term plan: differentiable analysis pipeline
 - investigate end-to-end analysis optimization, evaluate usefulness vs cost of gradient information

E. Kauffman at AGC demo day #2

AGC events

Organizing yearly workshops

- Mix of tutorials, demonstrations, discussions & planning
- Next workshop: IRIS-HEP AGC workshop on May 3–5

- Recently started bi-monthly "demo day" meetings
 - informal, short demos on latest developments
 - broad mix of topics to bring together diverse audience
 - examples: <u>#1</u>, <u>#2</u> (including recordings)
 - this format works well!

Upcoming AGC workshop in May

IRIS-HEP AGC workshop 2023 3-5 May 2023 Europe/Berlin timezone Overview Timetable Contribution List My Conference What is this workshop? My Contributions The Analysis Grand Challenge (AGC) workshop is a three-day event, hosted from May 3-5 at the Registration University of Wisconsin-Madison's Data Science Institute. It aims to bring together experts and all those interested to survey the current status of the AGC project and to build a concrete plan for addressing Participant List remaining items towards an AGC showcase event later this summer.

First AGC "demo day"

Summary

- The Analysis Grand Challenge is an integration exercise to study HL-LHC analysis workflows
- Developed ttbar analysis task & implementation based on CMS Open Data
 - all data & our implementation are publicly available
- We hope that the Analysis Grand Challenge can be useful to the broader community
 - test analysis tools, compare different workflows, test analysis facilities, ...
- Upcoming workshop: https://indico.cern.ch/e/agc-workshop-2023
- Stay in touch via our mailing list
 - analysis-grand-challenge@iris-hep.org (sign up at this Google group)

Give it a try!

You can run our AGC analysis pipeline on Binder

• <u>Try it out today!</u>

- All code also available on GitHub
- See also this PyHEP 2022 contribution
 - includes recording of walkthrough

Thank you!

- The AGC is made possible thanks to the help of a large number of people working on many different projects.
- Thank you in particular to the teams behind:
 - ▸ coffea-casa
 - Scikit-HEP, coffea, IRIS-HEP Analysis Systems
 - ServiceX, IRIS-HEP DOMA
 - ▶ IRIS-HEP SSL
 - CMS Open Data

Backup

Integration: connecting IRIS-HEP focus areas

Top quark pair production

